DOI QR코드

DOI QR Code

염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process

  • 전이슬 (한남대학교 대덕밸리캠퍼스 화학공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화학공학과)
  • Jeon, Yi Seul (Department of Advanced Material and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Material and Chemical Engineering, Hannam University)
  • 투고 : 2015.10.06
  • 심사 : 2015.10.26
  • 발행 : 2015.10.31

초록

다공성 PE (polyethylene) 정밀여과막 지지체 위에 이온교환고분자 물질을 염석법 및 가압법(phase separated and pressurization, PSP)으로 코팅하여 저압용 나노여과막을 제조하였다. 제조한 나노여과막의 코팅유무는 SEM 사진을 통하여 확인하였으며 코팅물질, 코팅시간, 이온세기에 따라 NaCl 100 ppm에서 투과도와 배제율을 측정하였다. PEI와 PSSA_MA의 농도를 동일하게 10,000 ppm으로 하고, 3 atm의 코팅압력을 주어 코팅한 결과, PEI의 투과도는 91.2 LMH, 제거율은 64.6% 이었으며 PSSA_MA의 투과도는 122.7 LMH, 제거율은 38.1%의 결과를 얻을 수 있었다. 본 연구로부터 염석법과 가압법을 통해 복합막 제조가 가능하다는 결론을 얻을 수 있었다.

Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.

키워드

참고문헌

  1. N. Hilal, H. Al-Zoubi, A. W. Mohammad, and N. A. Darwish, "Nanofiltration of highly concentrated salt solutions up to seawater salinity", Desalination, 184, 315 (2005). https://doi.org/10.1016/j.desal.2005.02.062
  2. E. Drioli, A. Criscuoli, and E. Curicio, "Integrated membrane operations for seawater desalination", Desalination, 147, 77 (2002). https://doi.org/10.1016/S0011-9164(02)00579-9
  3. Robert J. Petersen, "Composite reverse osmosis and nanofiltration membranes", J. Membr. Sci., 83, 81 (1993). https://doi.org/10.1016/0376-7388(93)80014-O
  4. L. P. Raman, M. Cheryan, and N. Rajagopalan, "Condiser nanofiltration for membrane separations", Chem. Eng. Prog., 90, 68 (1994).
  5. S.-W. Nam, K.-S. Jang, and K.-H. Youm, "Recycling of acidic ethching waste solution containing heavy metals by nanofiltration(II): Dead-end nanofiltration of PCB etching waste solution containing copper ion", Membr. J., 23, 92 (2013).
  6. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trend in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  7. C. J. Park, E. H. Cho, J. W. Rhim, and S. I. Cheong, "Studies on the preparation of nanofiltration membrane for ultra-low pressure application through hydrophilization of porous PVDF membrane using inorganic salt", Membr. J., 24, 69 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.69
  8. J.-H. Kim, H.-H. Kwon, S. H. Lee, and C.-H. Lee, "Treatment of endocrine disrupting chemicals and pharmaceuticasl with surface modified NF membrane", J. KSWW, 11, 405 (2007).
  9. R. F. Service, "Desalination freshens up", Science, 313, 1088 (2006). https://doi.org/10.1126/science.313.5790.1088
  10. A. El-Hashani, A. Toutianoush, and B. Tieke, "Use of layer-by-layer assembled ultrathin membranes of dicopper-[18]awacrown-N6 complex and polyvinylsulfate for water desalination under nanofiltration conditions", J. Membr. Sci., 318, 65 (2008). https://doi.org/10.1016/j.memsci.2008.02.037
  11. W. Jin, A. Toutianoush, and B. Tieke, "Use polyeletrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes", Langmuir, 19, 2550 (2003). https://doi.org/10.1021/la020926f
  12. A. Toutianoush, W. Jin, H. Deligoz, and B. Tieke, "Polyelectrolyte multilayer membranes for desalination of aqueous salt solutions and seawater sunder reverse osmosis conditions", Appl. Surf. Sci., 246, 437 (2005). https://doi.org/10.1016/j.apsusc.2004.11.068
  13. E. H. Cho and J. W. Rhim. "Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier", Macrom. Res., 23, 183 (2015). https://doi.org/10.1007/s13233-015-3017-1
  14. Y. F. Fan, Y. N. Wang, Y. G. Fan, and J. B. Ma, "Preparation of insulin nanofiltration and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption", In. J. Pharm., 324, 158 (2006).
  15. S. U. Hong, "Effect of substrates on nanofiltration characteristics of multilayer polyelectolyte membranes", Membr. J., 18, 185 (2008).
  16. W. Qi, X. Yan, J. Fei, A. Wang, Y. Cui, and J. Li, "Triggered release of insulin from glucose-sensitive enzyme multilayer shells", Biomaterials, 30, 2799 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.027
  17. Y.-J. Kim and J.-H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  18. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Applied of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)", Macrom. Res., 23, 360 (2015). https://doi.org/10.1007/s13233-015-3049-6
  19. Reverse osmosis and nanofiltration membraen module for water supply, KWWA, Seoul (2009).