DOI QR코드

DOI QR Code

Synthesis of Phospholene Oxide Catalysts for Hydrolysis Stabilizers

가수분해 방지제 제조용 Phospholene Oxide 촉매의 합성

  • Lee, Jin-Ha (Department of Environmental Engineering, Kongju National University) ;
  • Lee, Chang-Young (Department of Environmental Engineering, Kongju National University)
  • Received : 2014.11.13
  • Accepted : 2014.12.08
  • Published : 2015.02.10

Abstract

The MPPO (3-methyl-1-phenyl-2-phospholene-1-oxide) was prepared by using various polymerization inhibitors such as BHT (2,6-di-tert-butyl-4-methylphenol), TBC (4-tert-butylcatechol), and copper stearate. The MPPO was confirmed by the analysis using FTIR, $^1H$-NMR, and GC/MS regardless of the type of inhibitors. The yield of MPPO increased with the increase of reaction time, whereas the purity of MPPO decreased slightly. The yield and purity of MPPO increased with temperature, but the MPPO prepared by using copper stearate as a polymerization inhibitor exhibited no changes in the purity. The amount of inhibitors had no effect on the yield of MPPO. The purity of MPPOs increased with the amount of inhibitors, but the MPPO prepared by using BHT showed no changes of the purity. We found that the MPPO prepared by using copper stearate exhibited the highest catalytic activity for diphenylcarbodiimide synthesis.

BHT (2,6-di-tert-butyl-4-methylphenol), TBC (4-tert-butylcatechol), 스테아린산구리 등 여러 가지 중합방지제를 사용하여 MPPO (3-methyl-1-phenyl-2-phospholene-1-oxide)를 제조하였다. 제조한 시료에 대해 FTIR, $^1H$-NMR, GC/MS 등을 이용하여 분석한 결과 중합방지제의 종류에 관계없이 MPPO 합성이 확인되었다. 반응 시간이 증가하면 MPPO의 수율은 증가하지만, 순도는 약간 저하하는 경향을 보였다. 합성 온도가 높아지면 MPPO의 수율과 순도가 증가하였지만, 스테아린산구리를 사용한 경우 MPPO의 순도 변화는 나타나지 않았다. 중합방지제 양이 증가하면 MPPO의 수율은 변화가 나타나지 않았다. 순도는 중합방지제 양이 증가하면 증가하였지만, BHT를 사용한 경우에는 중합방지제 양에 따른 MPPO의 순도 변화가 없었다. Diphenylcarbodiimide 합성에 대한 MPPO의 촉매 활성은 스테아린산구리를 사용하여 제조한 MPPO가 가장 높았다.

Keywords

References

  1. J. S. Kim and W. G. Kang, Flame retardant regulation & development trends on the trim materials, KSAE 2011 Annual Conference, November, 2031-2034, Daejeon, Korea (2011).
  2. J. K. Cho, K. M. Kim, J. S. Na, K. W. Chung, and D. K. Lee, Development of new chemicals and their evaluation to cope with global environmental regulations, Polymer Science and Technology, 19, 499-511 (2008).
  3. B. N. Jang and J. H. Choi, Research trends of flame retardant and flame retardant resin, Polymer Science and Technology, 20, 8-15 (2009).
  4. C. B. Kim and S. B. Kim, Effect of halogen-phosphorus flame retardant content on properties of rigid polyurethane foam, Appl. Chem. Eng., 24, 77-81 (2013).
  5. G. Wick, E. Kruger, and H. Zeitler, Carbodiimide-modified polyester fiber and preparation thereof, US Patent, 5,885,709 (1999).
  6. S. Hoerold and O. Schacker, Flame retardant and stabilizer combined for thermoplastics polymers, US Patent, 7,255,814 B2 (2007).
  7. Y. Imashiro and I. Takahashi, Process for producing solution of high-molecular weight polycarbodiimide, US Patent, 5,338,794 (1994).
  8. S. Amano and N. Nakamura, Polycarbodiimide copolymer and process for production thereof, US Patent, 6,090,906 (2000).
  9. T. W. Campbell and J. J. Verbanc, Production of carbodiimides, US Patent, 2,853,473 (1958).
  10. G. Keil, Process for the manufacture of carbodiimides, US Patent, 4,096,334 (1978).
  11. F. Kurzer and K. Douraghi-Zadeh, Advances in the Chemistry of Carbodiimides, Chem. Rev., 67, 107-152 (1967). https://doi.org/10.1021/cr60246a001
  12. G. V. Coleman, D. Price, A. R. Horrocks, and J. E. Stephenson, Phospholene oxides, Canada Patent, 2088175 (1993).
  13. M. Yang and R. Kumar, Method of producing phospholene oxide, WIPO, 2014164045 (2014).
  14. Y. Imashiro, N. Horie, and T. Yamane, Process for the producing 3-methyl-1-phenylphospholene oixde, US Patent, 5,488,170 (1996).
  15. C. Symmes and L. D. Quin, 1-Vinylcycloalkenes in the McCormack cycloaddition with phosphorous dihalides. Stereochemistry of some resulting bicyclic phospholene oxides, J. Org. Chem., 41, 238-242 (1976). https://doi.org/10.1021/jo00864a012
  16. M. Yamada, M. Yamashita, T. Suyama, J. Yamashita, K. Asai, T. Niimi, N. Ozaki, M. Fujie, K. Maddali, S. Nakamura, and K. Ohnishi, Preparation and characterization of novel 4-bromo-3,4-dimethyl-1-phenyl-2-phospholene 1-oxide and the analogous phosphorus heterocycles or phospha sugars, Bioorg. Med. Chem. Lett., 20, 5943-5946 (2010). https://doi.org/10.1016/j.bmcl.2010.01.061
  17. R. A. Nyquist, Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra, Volume 1, 45-92, Academic Press, NY (2001).
  18. A. L. Chen, K.-L. Wei, R.-J. Jeng, J.-J. Lin, and S. A. Dai, Well-defied polyamide synthesis from diisocyanates and diacids involving hindered carbodiimide intermediates, Macromolecules, 44, 46-59 (2011). https://doi.org/10.1021/ma1022378