DOI QR코드

DOI QR Code

Characteristics of Drainage Pervious Block Considering Urban Rainfall

도심지 강우 특성을 고려한 투수성 보도블록의 배수 특성

  • Seo, Da-Wa (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Yun, Tae-Sup (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Youm, Kwang-Soo (GS E&C Infra-Structure Team, Technical Division) ;
  • Jeong, Sang-Seom (Dept. of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Mun, Sung-Ho (Dept. of Construction & Civil Engrg., Seoul National Univ. of Science and Technology)
  • 서다와 (연세대학교 토목환경공학과) ;
  • 윤태섭 (연세대학교 토목환경공학과) ;
  • 염광수 (GS 건설 인프라구조팀) ;
  • 정상섬 (연세대학교 토목환경공학과) ;
  • 문성호 (서울과학기술대학교 건설공학부)
  • Received : 2014.12.26
  • Accepted : 2015.01.16
  • Published : 2015.01.31

Abstract

This study presents the experimental results of pervious blocks subjected to a series of unique inflow conditions in urban area. The measured properties include the strength, permeability, drainage capacity and runoff, and evaporation for blocks made of two different size of aggregates. Results revealed that the strength satisfies the Korean Standard regardless of aggregate size whereas the immediate runoff occurred for the block with small size aggregate. On the other hand, the block with large aggregates allowed the drainage upon the initial inflow condition, which became hampered to induce the runoff by subsequent inflow. It was attributed to the fact that the capillary water often served as the hydraulic barrier in partially saturated condition. The salient observation indicated that the runoff highly depended on the evaporation and pre-wetting condition as well as the porosity and pore connectivity. The bilinear evaporate rate that makes the degree of saturation vary also had great influence on deterining the time-dependent runoff.

본 연구는 도심지 내 집중 강우 특성을 고려한 투수성 보도블록의 배수 특성을 알아보기 위하여 2 가지 골재크기에 대하여 강도, 투수성, 증발 및 배수실험을 실시하였다. 강도의 경우 골재크기와 무관하게 한국산업표준(KS) 규격을 만족시킨 반면, 작은 골재로 구성된 투수성 보도블록의 경우 단위시간당 유량이 작은 경우에도 표면유출이 발생하였다. 큰 골재는 초기 우수조건에서의 배수는 원활한 반면 일정시간이 지난 후 동일한 유량의 배수실험에서 표면유출이 관찰되었다. 이는 간극 내부의 물이 투수성을 저감시키는 역할로 작용한 것으로, 투수성 보도블록의 투수성과 배수 성능은 간극비나 간극연결도 만으로 결정되는 것이 아니고 시간에 따른 증발, 선행우수조건에 의해 좌우됨을 나타낸다. 또한 초기 포화도보다는 이중선형 형태의 시간당 증발 양상과 유입량과 증발로 인한 내부 포화도 변화가 표면유출에 미치는 영향이 큰 것으로 나타났다.

Keywords

References

  1. Ferguson, B. K. (2005), "Porous pavements", CRC Press.
  2. Yang, J. and Jiang, G. (2003), "Experimental Study on Properties of Pervious Concrete Pavement Materials", Cement and Concrete Research, Vol.33, No.3, pp.381-386. https://doi.org/10.1016/S0008-8846(02)00966-3
  3. Lee, S. H., Kim, J. W., Yoo, I. K., and Kim, N. S. (2012), Analysis on Runoff Reduction Effects of Detachable Permeable Block, Journal of Korean Society of Hazard Mitigation, Vol.12, No.6, pp.157-162 https://doi.org/10.9798/KOSHAM.2012.12.6.157
  4. Lee, H. Y., Kim, Y. T., Lee, C. K., and Lee, J. S. (2007), Experimential Study on Infiltration Properties of Permeable Pavement, 2007 KSCE Conference & Civil Expo 2013.
  5. Tennis, P. D., Leming, M. L., and Akers, D. J. (2004), "Pervious Concrete Pavements (No. PCA Serial No. 2828)", Skokie, IL: Portland Cement Association.
  6. Neithalath, N. (2004), "Development and Characterization of Acoustically Efficient Cementitious Materials", Ph.D thesis, Purdue University.
  7. Gerharz, B. (1999), "Pavements on the base of Polymer-modified Drainage Concrete", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.152, No.1, pp.205-209. https://doi.org/10.1016/S0927-7757(98)00831-0
  8. Kevern, J. T., Schaefer, V. R., Wang, K., and Suleiman, M. T. (2008), "Pervious Concrete Mixture Proportions for Improved Freeze-thaw Durability", Journal of ASTM International, Vol.5, No.2, pp.12.
  9. Haselbach, L. M., Valavala, S., and Montes, F. (2006), "Permeability Predictions for Sand-clogged Portland Cement Pervious Concrete Pavement Systems", Journal of Environmental Management, Vol.81, No.1, pp.42-49. https://doi.org/10.1016/j.jenvman.2005.09.019
  10. Sung, C. Y. and Kim, Y. I. (2012), Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement, Journal of the Korean Society of Agricultural Engineers, Vol.54, No.2, pp.157-166. https://doi.org/10.5389/KSAE.2012.54.2.157
  11. Scholz, M. and Grabowiecki, P. (2007). Review of Permeable Pavement Systems, Building and Environment, Vol.42, No.11, pp. 3830-3836. https://doi.org/10.1016/j.buildenv.2006.11.016
  12. Haselbach, L. (2010), "Pervious Concrete Testing Methods", In 2010 International Low Impact Development Conference-Redefining Water in the City. pp.180-192.
  13. Neithalath, N., Weiss, J., and Olek, J. (2006), "Characterizing Enhanced Porosity Concrete Using Electrical Impedance to Predict Acoustic and Hydraulic Performance", Cement and Concrete Research, Vol.36, No.11, pp.2074-2085. https://doi.org/10.1016/j.cemconres.2006.09.001
  14. Korea Meteorological Administration. (2014), http://www.kma.go.kr/ weather/climate/extreme_daily.jsp?type=hour_pre&mm=7&x=10&y=6.
  15. Rehder, B., Banh, K., and Neithalath, N. (2014), Fracture Behavior of Pervious Concretes: The Effects of Pore Structure and Fibers. Engineering Fracture Mechanics, Vol.18, pp.1-16.
  16. Lehmann, P., Assouline, S., and Or, D. (2008), Characteristic Lengths Affecting Evaporative Drying of Porous Media. Physical Review E, Vol.77, 056309. https://doi.org/10.1103/PhysRevE.77.056309
  17. Hall, C., Hoff, W. D., and Nixon, M. R. (1984), Water Movement in Porous Building Materials-VI. Evaporation and Drying in Brick and Block Materials, Building and Environment, Vol.19, No.1, pp. 13-20. https://doi.org/10.1016/0360-1323(84)90009-X
  18. Huang, B., Wu, H., Shu, X., and Burdette, E. G. (2010), Laboratory Evaluation of Permeability and Strength of Polymer-modified Pervious Concrete, Construction and Building Materials, Vol.24, No.5, pp. 818-823. https://doi.org/10.1016/j.conbuildmat.2009.10.025