References
- Brasil, P. (2010). DiagnosisMed: Diagnostic test accuracy evaluation for medical professionals. R package version 0.2.3.
- Connell, F. A. and Koepsell, T. D. (1985). Measures of gain in certainty from a diagnostic test. American Journal of Epidiology, 121, 744-753. https://doi.org/10.1093/aje/121.5.744
- Engelmann, B., Hayden, E. and Tasche, D. (2003). Measuring the discriminative power of rating systems. Risk, 82-86.
- Fawcett, T. (2003). ROC graphs: notes and practical considerations for data mining researchers, HP Labs Tech Report HPL-2003-4, CA, USA.
- Hong, C. S. (2009). Optimal threshold from ROC and CAP curves. Communications in Statistics - Simulation and Computation, 38, 2060-2072. https://doi.org/10.1080/03610910903243703
- Hong, C. S. and Joo, J. S. (2010). Optimal thresholds from non-normal mixture. The Korean Journal of Applied Statistics, 23, 943-953. https://doi.org/10.5351/KJAS.2010.23.5.943
- Hong, C. S., Joo, J. S. and Choi, J. S. (2010). Optimal thresholds from mixture distributions. The Korean Journal of Applied Statistics, 23, 13-28. https://doi.org/10.5351/KJAS.2010.23.1.013
- Hong, C. S. and Jung, E. S. (2013). Optimal thresholds criteria for ROC surfaces. Journal of the Korean Data & Information Science Society, 24, 1489-1496. https://doi.org/10.7465/jkdi.2013.24.6.1489
- Hong, C. S. and Wu, Z. Q. (2014). Alternative accuracy for multiple ROC analysis. Journal of the Korean Data & Information Science Society, 25, 1521-1530. https://doi.org/10.7465/jkdi.2014.25.6.1521
- Krzanowshi, W. J. and Hand, D. J. (2009). ROC curves for continuous data, Chapman and Hall, London.
- Li, J. and Fine, J. P. (2008). ROC analysis with multiple classes and multiple tests: Methodology and its application in microarray studies. Biostatistics, 9, 566-576. https://doi.org/10.1093/biostatistics/kxm050
- Perkins, N. J. and Schisterman, E. F. (2006). The inconsistency of optimal cutpoints obtained using two criteria based on based on the receiver operating characteristic curve. American Journal of Epidiology, 163, 670-675. https://doi.org/10.1093/aje/kwj063
- Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42, 203-231. https://doi.org/10.1023/A:1007601015854
- Sobehart, J. R. and Keenan, S. C. (2001). Measuring default accurately. Credit Risk Special Report, Risk, 14, 31-33.
- Velez, D. R., White, B. C., Motsinger, A. A., Bush, W. S., Ritchie, M. D., Williams, S. M. and Moore, J. H. (2007). A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genetic Epidiology, 31, 306-315. https://doi.org/10.1002/gepi.20211
- Youden, W. J. (1950). Index for rating diagnostic test. Cancer, 3, 32-35. https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
- Zou, K. H., O'Malley, A. J. and Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115, 654-657. https://doi.org/10.1161/CIRCULATIONAHA.105.594929
Cited by
- Parameter estimation of linear function using VUS and HUM maximization vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1305
- TPR-TNR plot for confusion matrix vol.28, pp.2, 2021, https://doi.org/10.29220/csam.2021.28.2.161