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Two optimal threshold criteria for ROC analysis
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Abstract

Among many optimal threshold criteria from ROC curve, the closest-to-(0,1) and
amended closest-to-(0,1) criteria are considered. An ROC curve that passes close to the
(0,1) point indicates that two models are well classified. In this case, the ROC curve is
located far from the (1,0) point. Hence we propose two criteria: the farthest-to-(1,0) and
amended farthest-to-(1,0) criteria. These criteria are found to have a relationship with
the KolmogorovSmirnov statistic as well as some optimal threshold criteria. Moreover,
we derive that a definition for the proposed criteria with more than two dimensions
and with relations to multi-dimensional optimal threshold criteria.
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1. Introduction

There are many criteria for determining the optimal threshold for two classified models.
Some of them can be explained using the receiver operating characteristic (ROC) curve
(Provost and Fawcett, 2001; Sobehart and Keenan, 2001; Engelmann et al., 2003; Fawcett,
2003; Zho et al., 2007; Hong, 2009; Hong et al., 2013). Among them, there are the closest-
to-(0,1) and amended closest-to-(0,1) criteria of Perkins and Schisterman (2006). These two
criteria are based on the idea that models are well classified when the ROC curve is closer to
the (0,1) point. Since the ROC curve that plots close to the (0,1) point is far from the (1,0)
point, we propose two criteria in this paper: the farthest-to-(1,0) and amended farthest-to-
(1,0) criteria.

Definitions of the farthest-to-(1,0) and amended farthest-to-(1,0) criteria, denoted as F
and AF , respectively, are presented and explained in Section 2. The F and AF criteria could
be extended to more than two dimensions, as explained in Section 3. Some relationships have
been found between these criteria and others such as MVD (maximum vertical distance;
Krzanowski and Hand, 2009), J (Youden index; Youden, 1950), SSS (sum of sensitivity and
specificity; Connell and Koepsell, 1985), TR (true rate: Velez et al., 2007; Hong and Joo,
2010), AA (accuracy area; Brasil, 2010) and CCSR (correct classification simple rate; Hong
and Wu, 2014).
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2. Farthest-to-(1,0) and amended farthest-to-(1,0) criteria

Perkins and Schisterman (2006) proposed the closest-to-(0,1) and amended closest-to-(0,1)
criteria, C and AC, respectively. The closest-to-(0,1) criterion minimizes the distance be-
tween the (0,1) point and ROC curve, C = min

√
(1− Fd(x))2 + (Fn(x))2, where Fd(·) and

Fn(·) are the cumulative distribution functions of the default and non-default states, respec-
tively, assuming Fd(x) ≥ Fn(x) for all x. The amended closest-to-(0,1) criterion obtains a
threshold for minimizing the ratio of two distances: the distance from the (0,1) point to the
ROC curve, and the distance from the (0,1) point to the straight line, Fd(x) = Fn(x), so
that AC = min{(1− Fd(x)) + Fn(x)}.

With similar arguments, we consider a criterion maximizing the distance between the (1,0)
point and the ROC curve, since we can assume that the ROC curve near the (0,1) point
might be far away from the (1,0) point. This criterion is the square root of the sum of the
square of the true positive rate (TPR) and squared of the true negative rate (TNR) (see
Figure 2.1). This is called the farthest-to-(1,0) criterion.

Definition 2.1 The farthest-to-(1,0) criterion: F

F = max
√

(1− Fn(x))2 + (Fd(x))2. (2.1)

By extending the amended closest-to-(0,1) criteria (AC) of Perkins and Schisterman
(2006), two distances are considered: the distance from the (1,0) point to the straight line,
Fd(x) = Fn(x), (r2) and the distance from the (1,0) point to the ROC curve (r1) (see Figure
2.2). We then propose an additional criterion that maximizes the ratio of two distances r1
and r2 such that

Definition 2.2 The amended farthest-to-(1,0) criterion: AF

AF = max(
r1
r2

) = max

√√√√ (1− Fn(x))2 + (Fd(x))2

( 1−Fn(x)
1−Fn(x)+Fd(x)

)2 + ( Fd(x)
1−Fn(x)+Fd(x)

)2

= max{(1− Fn(x)) + Fd(x)}.

(2.2)

Figure 2.1 F and C in ROC curve Figure 2.2 AF and AC in ROC curve
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Note that the AF is the same measure as the SSS (Connell and Koepsell, 1985). It is
found that F and AF are designed with TPR and TNR and the thresholds obtained by
using F and AF are not identical, and also differ from those for C and AC.

The square of the AF criterion can be expressed as

(AF )2 = max{(1− Fn(x))2 + (Fd(x))2 + 2(1− Fn(x))(Fd(x))}. (2.3)

The first two terms on the right side of (2.3) are the same as F in (2.1), and the last third
cross product term is identical to AA (accuracy area: Brasil, 2010). This can be described
geometrically, as shown in Figure 2.3. Since the thresholds obtained by F and AA are not
always the same as those obtained by AF , and the square of AF is not equivalent to the
sum of both the square of F and two times that of AA such as (AF )2 6= (F )2 + 2AA, where
AA = max{(1− Fn(x))Fd(x)}.

Figure 2.3 Geometric meaning of relationships among F , AF and AA

3. Extension to multi-dimensions

These criteria are applicable to the ROC surface in three dimensions: the farthest-to-
(0,0,0) and amended farthest-to-(0,0,0) criteria. The farthest-to-(0,0,0) criterion is to find
a threshold which maximizes the distance between the origin point (0,0,0) and the ROC
surface (see Figure 3.1):

F 3 = max
√

(F1(x))2 + (F2(y)− F2(x))2 + (1− F3(y))2. (3.1)

The superscript over the F in (3.1) indicates that this criterion has three outcomes in
three dimensions.

Two distances r1 and r2 in Figure 2.2 are extended to the ROC surface, so that the
amended farthest-to-(0,0,0) criterion could be defined to maximize the ratio of the distance
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(r1) from the origin to the curve and that of (r2) from the origin to the plane, F1(x) +
F2(x) + F3(x) = 1, (see Figure 3.1).

AF 3 = max(r1/r2),

where r21 = F1(x)2 + (F2(y)−F2(x))2 + (1−F3(y))2, and r22 = [F1(x)2 + (F2(y)−F2(x))2 +
(1−F3(y))2]/[F1(x) + (F2(y)−F2(x)) + (1−F3(y))]2. Hence the AF in three dimensions is
expressed as

AF 3 = max{(F1(x)) + (F2(y)− F2(x)) + (1− F3(y))}. (3.2)

The three terms on the right side of (3.2) represent all true classification rates for a 3× 3
confusion matrix. Since both sensitivity and specificity are true classification rates, SSS
might be regarded as the STR (sum of true rates). Then it can be said that the AF in three
dimensions is identical to STR.

Figure 3.1 F in ROC surface Figure 3.2 AF in ROC surface

The farthest-to-origin and amended farthest-to-origin criteria can be generalized to the
ROC manifold for k dimensions.

Definition 3.1 The farthest-to-origin and amended farthest-to-origin criteria for k dimen-
sions

F k = max
√

(F1(x1))2 + (F2(x2)− F2(x1))2 + · · ·+ (1− Fk(xk−1))2,

AF k = max{(F1(x1)) + (F2(x2)− F2(x1)) + · · ·+ (1− Fk(xk−1))}.
(3.3)

We can also say that the AF is the same as STR for multi-dimensions, as the preceding
that AF is the same as STR for two and three dimensions.

For k dimensions, the square of AF is not identical to the sum of both the square of F
and two times that of AA’s such as

(AF k)2 6= (F k)2 + 2(AA1,2 + AA2,3 + · · ·+ AAk,1),

since thresholds obtained by F and AA are not the same as those obtained by AF .
Hong and Yoo (2011) and Hong and Jung (2013) showed relationships among J , AC, TR,
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MVD, SSS (=STR) criteria and the Kolmogorov-Smirnov statistic for a three dimensional
ROC surface. Furthermore, Hong and Wu (2014) proposed the CCSR (correct classification
simple rate), and described relationships with CCSR and all of these measures in multi-
dimensions. Since the AF has a linear relationship with STR, AF can also be expressed in
terms of relationships with KS, MVD, J , AC, STR, TR and CCSR for k dimensions as
follows.

Properties of the AF

(1) AF k =

k∑
j=2

KSj−1,j + 1,

(2) AF k = MVDk + 1,

(3) AF k = STRk,

(4) AF k =
k

2
(Jk + 1),

(5) AF k = k × TRk,

(6) AF k = 2−ACk,

(7) AF k =

k∑
i

CCRi = CCSRk.

Therefore, the AF has a linear relationship with seven other criteria for k (≥ 3) dimensions.
The optimal thresholds obtained via AF are identical to those obtained via the seven criteria:
KS, MVD, STR, J , TR, AC and CCSR.

4. Conclusion

In this paper, two optimal threshold criteria, the farthest-to-(1,0) and amended farthest-
to-(1,0) criteria (F and AF ) are proposed based on the closest-to-(0,1) and amended closest-
to-(0,1) criteria (C and AC) of Perkins and Schisterman (2006).

It is found that the threshold obtained by using F may be different from that by using C.
The AF is known to be the same measure as STR. The F and AF can also be extended to
more than two dimensions. Mathematical and geometrical relationships among F , AF and
AA are discussed.

Furthermore, we derive seven properties of the AF ; AF has a linear relationship with the
summation of the Kolmogorov-Smirnov statistics and some optimal threshold criteria such
as the Youden index, the maximum vertical distance, the amended closet-to-(0,1) criterion,
the sum of sensitivity and specificity, the true rate and the correct classification simple rate.
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