DOI QR코드

DOI QR Code

Application for Degradation of 2,6-dichlorophenol by in-situ Synthesized Liquid Ferrate(VI)

원위치 제조 액상 Ferrate(VI)를 이용한 2,6-dichlorophenol의 분해적용 연구

  • Gwak, Bo-ra (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Il-kyu (Department of Environmental Engineering, Pukyong National University)
  • Received : 2015.10.14
  • Accepted : 2015.12.29
  • Published : 2015.12.31

Abstract

Degradation of 2,6-Dichlorophenol (DCP) using liquid ferrate(VI) synthesized by wet oxidation method has been studied. Several parameters such as pH (acid, base and neutral), DCP initial concentration, ferrate dosage, and temperature have been examined to determine the optimal experimental conditions. The ferrate(VI) has useful properties such as strong oxidizing power and selectivity and generates a non-toxic end product, Fe(III). Ferrate ion reduced rapidly to Fe(III) and oxygen in acidic and neutral conditions. The experimental results showed the higher DCP degradation efficiency in the neutral condition than in the acidic and basic conditions. The oxidation of DCP strongly depended on the dosage of ferrate added to the reactor and DCP initial concentration. With increasing of ferrate dosage the degradation efficiency of DCP increased, while the degradation efficiency of DCP decreased with increasing of DCP initial concentration. The effect of temperature has been tested at 4 different levels (10, 25, 35, and $50^{\circ}C$). The optimal temperature was obtained in $25^{\circ}C$ and degradation efficiency decreased as the temperature increased in the range from $25^{\circ}C$ to $50^{\circ}C$. The DCP degradation pathways were studied and proposed based on the intermediate products identified by GC/MS analysis.

습식산화법으로 합성한 Ferrate(VI)를 적용하여 2,6-Dichlorophenol의 분해 연구를 하였다. 최적의 분해 조건을 찾기 위해 영향인자로 pH(산성, 염기성, 중성), DCP의 초기 농도, ferrate 주입 농도, 수용액의 온도를 두어 실험하였다. Ferrate(VI)는 강력한 산화력과 선택성이 있으며, 무해한 최종산물인 Fe(III)을 만들어 유용한 성질을 가지고 있다. Ferrate 이온은 산성과 중성 조건에서 재빠르게 Fe(III)으로 환원한다. 본 실험 결과로 DCP의 분해율은 산성과 염기성 조건보다 중성 조건에서 좋은 것으로 나타났다. ferrate 주입 농도와 DCP의 초기 농도에 따라 영향을 강하게 받는다. ferrate의 주입 농도가 증가할수록 또한 DCP의 초기 농도가 감소할수록 DCP의 분해율이 좋게 나타났다. 수용액의 온도는 10, 25, 35, $50^{\circ}C$에서 실험을 진행하였다. 최적의 조건은 $25^{\circ}C$로 나타났으며, $25^{\circ}C$에서 $50^{\circ}C$까지의 범위에서는 증가할수록 효율이 감소하는 것으로 나타났다. DCP의 중간생성물 연구는 GC/MS를 통해 실험하였다.

Keywords

References

  1. Koch, E., and in: Hauchler, L., (Ed.), Clobal Trends 93/94, Fischer Taschenbuchverlag, frankfurt a. M., 305.
  2. Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U. and Wehrli, B., "Global water pollution and Human Health," Annu. Rev. Environ. Resour., 35, 109-136(2010). https://doi.org/10.1146/annurev-environ-100809-125342
  3. Virender, K. S., "Potassium ferrate(VI) : an environmentally friendly oxidant," Adv. Environ. Res., 6, 143-156(2002). https://doi.org/10.1016/S1093-0191(01)00119-8
  4. Virender, K. S., "Oxidation of inorganic compounds by Ferrate (VI) and Ferrate(V): One-electron and two-electron transfer steps," Environ. Sci. Technol., 44(13), 5148-5152(2010). https://doi.org/10.1021/es1005187
  5. Graham, N., Jiang, C.-C., Li, X.-Z., Jiang, J.-Q. and Ma, J., "The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate," Chemophere, 56, 949-956 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.060
  6. Jiang, J. and Lloyd, B., "Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment," Water Res., 36, 1397-1408(2002). https://doi.org/10.1016/S0043-1354(01)00358-X
  7. Li, C., Li, X. Z. and Graham, N., "A study of the preparation and reactivity of potassium ferrate," Chemosphere, 61, 537-543(2005). https://doi.org/10.1016/j.chemosphere.2005.02.027
  8. Jiang, J. Q., "Research progress in the use of ferrate(VI) for the environmental remediation," J. Hazard. Mater., 146 (3), 617-623(2007). https://doi.org/10.1016/j.jhazmat.2007.04.075
  9. Ma, J. and Liu, W., "Effectiveness and mechanism of potassium ferrate preoxidation for algae removal by coagulation," Water Res., 36(4), 871-878(2002). https://doi.org/10.1016/S0043-1354(01)00282-2
  10. Jiang, J.-Q., "Advances in the development and application of ferrate(VI) for water and wastewater treatment," J. Chem. Technol. Biotechnol., 89(2), 165-177(2014). https://doi.org/10.1002/jctb.4214
  11. Ahlborg, U. G. and Thunberg, T. M., "Chlorinated phenols: pccurrence, toxicity, metabolism and environmental impact," CRC Crit. Rev. Toxicol., 7, 1-35(1980) https://doi.org/10.3109/10408448009017934
  12. Marc, P. T., Veronica, G. M., Miguel, A. B., Jaime, G. and Santiago, E., "Degradation of chlorophenols by means of advanced oxidation processes," Appl. Catal., 47, 219-256(2004). https://doi.org/10.1016/j.apcatb.2003.09.010
  13. Veschueren, H. K., "Handbook of Environmental Data on Organic Chemicals," VNR, New York(1983).
  14. Folke, J. and Birklund, J., "Danish Coastal Water Levels of 2,3,4,6-Tetrachlorophenol, Pentachlorophenol, and Total Organohalogens in Blue Mussels (Mytilus edulis)," Chemosphere, 15(7), 895-900(1986). https://doi.org/10.1016/0045-6535(86)90054-8
  15. Sushil, K. and Kansal, M. C., "Photocatalytic Degradation of 2,6-Dichlorophenol in Aqueous Phase Using Titania as a Photocatalyst," Scientific Res., 4, 416-420(2012).
  16. Louis, T. O. and James, M. S., "Preparation of sodium ferrate (VI)," J. Am. Chem. Soc., 73, 5497(1951). https://doi.org/10.1021/ja01155a564
  17. Jiang, J.-Q. and Lloyd, B., "Progress in the development and use ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment," Water Res., 36(6), 1397-1408(2002). https://doi.org/10.1016/S0043-1354(01)00358-X
  18. Park, G. S., Kim, E. J., Kim, H. W., Lee, S. H. and Yoo, M. J., "Comparison between ozone and ferrate in oxidizing nonylphenol," J. Korean Soc. Environ. Eng. Autumn Workshop Presentation File, pp. 328-335(2006).
  19. Lee, K. C. and Kim, I. K., "Degradation of benzothiophene by potassium ferrate(VI) Degradation of benzothiophene (BT) in the aqueous phase by potassium ferrate(VI)," Korean Soc. Water and Wastewater, 25(5), 643-649(2011).
  20. Lee, Y. H., Cho, M., Kim, J. Y. and Yoon, J. Y., "Chemistry of Ferrate in Aqueous Solution and its applications as a green chemical" J. Ind. Eng. Chem., 10(1), 161-171(2004).
  21. Choi, H. M., Kwon, J. H. and Kim, I. K., "Degradation of 2-chlorophenol by Ferrate(VI)," J. Korean Soc. Water and Wastewater, 25(1), 63-74(2011).
  22. Kim, H. W., Treatment of wastewater containing Cyanide and Cu-EDTA with ferrate, Kwandong University master's degree (2007).
  23. Carr, J. D., Kelter, P. B., Tabatabai, A., Spochal, D., Erickson, J. and McLaughin, C. W., "Properties of ferrate in aqueous solution: an alternative oxidant in waterwater treatment," Proc. Conf. Water Chlorin. Chem. Environ. Impact Health Effects, 5, 1285-1298(1985).
  24. Zuzana, M., Karel, B., Jan, H., Virender, K. S., Raymond, J. T. and Baumc, J. C., "Research progress in the electrochemical synthesis of ferrate(VI)" Electrochimica Acta, 54(10), 2673-2683(2009). https://doi.org/10.1016/j.electacta.2008.11.034
  25. Svanks, K., "Oxidation of Ammonia in Water by Ferrates (VI) and (IV)," 71(444), (1976).
  26. Wagner, W. F., Gump, J. R. and Hart, E. N. "Factors Affecting Stability of Aqueous Potassium Ferrate(VI) Solutions," Anal. Chem. American Chem. Soc., 24(9), 1497-1498(1952).
  27. Nam, J.-H., Kim, I.-K., Kwon, J. H. and Kim, Y. D., "Applications of electrochemical ferrate for degradation of trichloroethylene in the aqueous phase," Desalination and Water Treatment, p. 1-8(2015).
  28. Benon, H., Bielski, J. and Thomas, M. J., "Studies of Hypervalent Iron in Aqueous Solutions. 1. Radiation-Induced Reduction of Iron(V1) to Iron(V) by <$CO_2\;^-$" Oklahoma, J. Am. Chem. Soc., 109, 7761-7764(1987). https://doi.org/10.1021/ja00259a026
  29. Huang, H., Sommerfeld, D., Dunn, B. C., Eyring, E. M. and Lloyd, C. R., "Ferrate(VI) Oxidation of Aqueous Phenol: Kinetics and Mechanism" J. Phys. Chem. A, 105, 3536-3541(2001). https://doi.org/10.1021/jp0039621