DOI QR코드

DOI QR Code

Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic matter of Livestock Wastewater

마이크로버블과 촉매 적용에 따른 가축분뇨의 슬러지와 유기오염물질 감량 효과

  • Jang, Jae Kyung (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Kim, Min Young (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Sung, Je Hoon (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Chang, In Seop (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Tae Young (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Hyun Woo (Department of Environmental Engineering, JunBuk National University) ;
  • Kang, Young Koo (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Kim, Young Hwa (Energy and Environmental Division, National Academy of Agricultural Science)
  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김민영 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 성제훈 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 장인섭 (광주과학기술원 환경공학과) ;
  • 김태영 (광주과학기술원 환경공학과) ;
  • 김현우 (전북대학교 환경공학과) ;
  • 강연구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (국립농업과학원 농업공학부 에너지환경공학과)
  • Received : 2015.10.02
  • Accepted : 2015.10.23
  • Published : 2015.10.31

Abstract

This study was tested to evaluate the effect of the six different combinations of microbubble, catalyst, and air as oxidant on the sludge and organic matter reduction. When all of microbubbles and catalyst, and an oxidizing agent (under Conditions 1) such as air were used, the sludge was removed more than 99%, and TCOD and SCOD removal was 58% and 13%, respectively. This result was the highest value of six conditions. In the following order, the sludge reduction of the microbubbles with air (Condition 2) and catalyst with air (condition 4) was 95% and 93.1%, respectively. TCOD removal was found to be each 53% and 47%. When the microbubbles were used with oxidant like air, the removal of sludge and organic matter was high. All of these values were higher than that of using only microbubbles and catalyst without air. In the microbubbles and catalyst react under air supply condition, OH-radicals were generated in the reaction process. These OH-radicals in the reaction process decomposed the pollutants by the strong oxidizing power. In all conditions with air, the sludge reduction was high removal rate more than 93% and TCOD removal was over 47%.

마이크로버블과 촉매 그리고 산화제(공기)의 적용에 따라 6개의 서로 다른 조건으로 구분하여 가축분뇨의 슬러지 감량과 유기오염물질의 저감 효과를 알아보았다. 마이크로버블과 촉매, 그리고 산화제 모두 사용 하였을 때(조건1), 슬러지는 99% 이상 제거 되었으며, TCOD와 SCOD는 각각 58%와 13% 제거되었으며, 모든 조건에서 가장 높은 저감 효과를 나타냈다. 산화제를 공급하면서 마이크로버블(조건2)과 촉매(조건 4)를 사용하였을때, 슬러지 감량은 95%와 93.1%, TCOD의 감량은 53%와 47%로 나타났다. 산화제(공기)를 공급할 때는 마이크로버블의 저감효과가 촉매보다는 더 큰 것으로 나타났다. 마이크로버블과 촉매 반응은 산화제와 함께 반응 과정 중에 OH-라디칼이 생성되고, OH-라디칼의 강한 산화력에 의해 오염물질이 분해되는 것이다. 산화제와 함께 마이크로버블과 촉매에 의한 슬러지 감량 효과는 모두 93% 이상이었으며, TCOD의 감량은 47% 이상이었다.

Keywords

References

  1. Kim, H., Lee, D., Jang, H. and Chung, T., "Anaerobic digestion technology for biogas production using organic waste," Korea Org. Resour. Recycling Assoc., 18(3), 50-59(2010).
  2. Jeong, K., Choi, D. Y., Kawg, J. H., Park, C. H., Kim, J. W., Jeong, M. S. and Yoo, Y. H., "Treatment and reuse of solid piggery slurry," Proc. Korea Org. Resour. Recycling Assoc., pp. 135-139(2007).
  3. Zhu, N., "Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw," Bioresour. Technol., 98, 9-13(2007). https://doi.org/10.1016/j.biortech.2005.12.003
  4. Jang, J. K., Kim, S. H., Ryou, Y. S., Lee, S. H., Kang, Y. G., Kim, Y. H. and Choi, J. E., "Studies on a feasibility of swine farm wastewater treatment using microbial fuel cell," Korean Soc. Microbiol. Biotechnol., 38(4), 461-466(2010).
  5. Huang, G. F., Wong, J. W. C., Wu, Q. T., Nagar, B. B., "Effect of C/N on composting of pig manure with sawdust," Waste Manage., 24, 805-813(2004). https://doi.org/10.1016/j.wasman.2004.03.011
  6. Kishida, N., Kim, J., Chen, M., Sasaki, H. and Sudo, R., "Effectiveness of oxidation-reduction potential and Ph as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors," J. Biosci. Bioeng., 96(3), 285-290(2003). https://doi.org/10.1016/S1389-1723(03)80195-0
  7. Bernet, N., Delgenes, N., Akunna, J. C., Delgenes, J. P. and Moletta, R., "Combined anaerobic-aerobic SBR for the treatment of piggery wastewater," Water Res., 34(2), 611- 619(2000) https://doi.org/10.1016/S0043-1354(99)00170-0
  8. Belmonte, M. and Vidal, G., "Effect of COD/N ratio on treatment of swine wastewater," 3rd Symposium on Agricultural and Agroindustrial Waste Management, IIISIGER, Sao Pedro(2003).
  9. Takahashi, M., "The potential of microbubbles in aqueous solutions-Electrical property of the gas-water interface-," J. Phys. Chem. B, 109, 21858-21864(2005). https://doi.org/10.1021/jp0445270
  10. Agarwa, A., Ng, W. J. and Liu, Y., "Principle and applications of microbubble and nanobubble technology for water treatment," Chemosphere, 84, 1175-1180(2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  11. Marui, T., "An introduction to micro/nano-bubbles and their applications," Systemics, Cybernetics and Informatics, 11, 68-73(2013).
  12. Cha, H. S., "Present state and future prospect for microbubble technology," Bullet. Food Technol., 22, 544-552(2009).
  13. Li, P., Takahashi, M. and Chiba, K., "Enhanced free-radical generation by shrinking microbubbles using a copper catalyst," Chemosphere, 77, 1157-1160(2009). https://doi.org/10.1016/j.chemosphere.2009.07.062
  14. Takahashi, M., Chiba, K. and Li, P., "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus," J. Phys. Chem. B, 111, 1343-1347(2007). https://doi.org/10.1021/jp0669254
  15. Lee, W. J., Lee, C. H., Yoo, J. Y., Kim, K. Y. and Jang. K. I., "Sterilization efficacy of washing method using based on microbubbles and electrolyzed water on various vegetables," J. Korean Soc. Food Sci. Nutr., 40, 912-917(2011). https://doi.org/10.3746/jkfn.2011.40.6.912
  16. Kim, C. S., Yu, S. Y., Lee, G. I., Kim, S. H., Lee, J. W. and Song, J. K., "Sterilizing effect of plant pathogenic fungi using ozone microbubble." Producted Horticulture and Plant Factory, 23, 250-255(2014). https://doi.org/10.12791/KSBEC.2014.23.3.250
  17. Lee, S. H., Jung, K. J., Kwon, J. H. and Lee, S. H., "Effect of microbubble ozonation process on performance of biological reactor system for excess sludge solubilisation," J. Korean Soc. Environ. Eng., 33(2), 113-119(2011). https://doi.org/10.4491/KSEE.2011.33.2.113
  18. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Proc. Biochem., 39(8), 1007-1012(2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  19. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P. and Rabaey, K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  20. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18, 327-324(2003). https://doi.org/10.1016/S0956-5663(02)00110-0
  21. Choi, K. C., Kwon, O. O., Kim, Y. H., Park, K. H., Lee, W. S., Lee, J. Y., Jun, S. J. and Jeong, S. K., Standard method, 4th ed, Donghwa, Seoul, pp. 253-255(2006).
  22. Jung, K. D., Joo, O. S., Oh, J. W., Lee, E. G., and Choi, G. I., "Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide," Patent 10-2005-0116694.
  23. Lee, J., Jin, B., Cho, S., Jung, K. and Han, S., "Advanced wet oxidation of Fe/MgO : catalystic ozonation of humic acid and phenol," Theories and Appl. Chem. Eng., 8(2), 4573- 4576(2002).
  24. Chu, L. B., Yan, S. T., Xing, X. H., Yu, A. F., Sun, X. L. and Jurcik, B., "Enhanced sludge solubilization by microbubbles ozonation," Chemosphere, 72, 205-212(2008). https://doi.org/10.1016/j.chemosphere.2008.01.054

Cited by

  1. Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.599