DOI QR코드

DOI QR Code

Alignments of Reactive Mesogen Using Rubbed Glass Substrates

러빙한 유리 기판을 이용한 반응성 액정 배향

  • Lee, Mongryong (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Bae, Jin Woo (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Kim, Anna (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Yun, Hyeong Seuk (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University) ;
  • Song, Kigook (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
  • 이몽룡 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 배진우 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 김안나 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 윤형석 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터) ;
  • 송기국 (경희대학교 정보전자신소재공학과 영상정보소재기술연구센터)
  • Received : 2014.08.28
  • Accepted : 2014.10.21
  • Published : 2015.01.25

Abstract

Alignments of photo-reactive mesogen were induced using bare glass substrates without a polymer alignment layer. It was found by using polarized FTIR spectroscopy, polarized microscopy, and birefringence measurement experiments that the reactive mesogen could be aligned along the rubbing direction although the glass substrate without an alignment layer was used. The induction mechanism of the rubbed bare glass is ascribed to that polymers from rubbing clothes are coated on the glass substrate along the rubbing direction and lead the alignment of liquid crystals through intermolecular interactions.

고분자 배향막이 없는 순수 유리 기판을 이용하여 광반응성 액정의 배향을 유도하였다. 유리 기판을 러빙하여 액정 배향을 유도한 경우, 고분자 배향막을 사용하여 유도한 경우와 같이 액정을 러빙 방향과 평행하게 배향할 수 있는 것을 편광 FTIR, 편광현미경, 복굴절 측정 등의 실험을 통해서 알 수 있었다. 순수 유리 기판을 러빙하여 액정 배향을 유도하는 메커니즘은 러빙 과정에서 유리 표면에 묻어나온 고분자들이 러빙 방향으로 늘어서 분자간 상호작용을 통하여 액정 분자들의 배향을 유도하는 것이다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. S. Seo, S. Kobayashi, and M. Nishikawa, Appl. Phys. Lett., 62, 2392 (1992).
  2. B. S. Ban and Y. B. Kim, J. Am. Chem. Soc., 103, 3869 (1999).
  3. E. S. Lee, P. Vetter, T. Miyahita, and T. Uchida, Jpn. J. Appl. Phys., 32, L1339 (1993). https://doi.org/10.1143/JJAP.32.L1339
  4. M. G. Samant, J. Stohr, H. R. Brown, T. P. Russell, J. M. Sands, and S. K. Kumar, Macromolecules, 29, 8334 (1996). https://doi.org/10.1021/ma951820c
  5. S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 38, 4331 (2005). https://doi.org/10.1021/ma047856z
  6. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003). https://doi.org/10.1021/jp034955q
  7. B. S. Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000). https://doi.org/10.1080/026782900203290
  8. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature, 351, 49 (1991). https://doi.org/10.1038/351049a0
  9. K. Ichimura, Chem. Rev., 100, 1847 (2000). https://doi.org/10.1021/cr980079e
  10. M. O'Neill and S. M. Kelly, J. Phys. D: Appl. Phys., 33, R67 (2000). https://doi.org/10.1088/0022-3727/33/10/201
  11. M. Obi, S. Morino, and K. Ichimura, Chem. Mater., 11, 656 (1996).
  12. P. O. Jackson, M. Oneill, W. L. Duffy, P. Hindmarsh, S. M. Kelly, and G. Owen, Chem. Mater., 13, 694 (2001). https://doi.org/10.1021/cm0011413
  13. B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003). https://doi.org/10.1021/la020453c
  14. S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003). https://doi.org/10.1021/la0348158
  15. S. W. Lee and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 42, 1322 (2004). https://doi.org/10.1002/pola.11059
  16. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001). https://doi.org/10.1002/1521-3927(20010801)22:12<941::AID-MARC941>3.0.CO;2-Q
  17. S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003). https://doi.org/10.1021/ma034445u
  18. M. Hasegawa, Jpn. J. Appl. Phys., 38, L457 (1999). https://doi.org/10.1143/JJAP.38.L457
  19. Z. Suna, A. Qina, Z. Chena, and Y. Wanga, Liq. Cryst., 37, 345 (2010). https://doi.org/10.1080/02678290903564437
  20. A. Y.-G. Fuh, C.-K. Liu, K.-T. Cheng, C.-L. Ting, C.-C. Chen, P. C.-P. Chao, and H.-K. Hsu, Appl. Phys. Lett., 95, 161104 (2009). https://doi.org/10.1063/1.3253413
  21. D. Coates, O. Parri, M. Verrall, K. Slaney, and S. Marden, Macromol. Symp., 154, 59 (2000).
  22. L. H. Wu, S. Luo, C. S. Hsu, and S. T. Wu, Jpn. J. Appl. Phys., 39, 5899 (2000). https://doi.org/10.1143/JJAP.39.5899
  23. F. Li, F. W. Harris, and S. Z. D. Cheng, Polymer, 37, 5321 (1996). https://doi.org/10.1016/0032-3861(96)00467-3
  24. C. D. Hoke, H. Mori, and P. J. Bos, Jpn. J. Appl. Phys., 38, L642 (1999). https://doi.org/10.1143/JJAP.38.L642
  25. W.-Y. Wu, C.-C. Wang, and A. Y. Fuh, Opt. Express, 16, 17131 (2008). https://doi.org/10.1364/OE.16.017131
  26. Y.-C. Yang and D.-K. Yang, J. Opt. A: Pure Appl. Opt., 11, 105502 (2009). https://doi.org/10.1088/1464-4258/11/10/105502
  27. I. McCulloch, W. Zhang, M. Heeney, C. Bailey, M. Giles, D. Graham, M. Shkunov, D. Sparrowe, and S. Tierney, J. Mater. Chem., 13, 2436 (2003). https://doi.org/10.1039/b307764k
  28. W. Warta, R. Stehle, and N. Karl, Appl. Phys. A, 36, 163 (1985).
  29. F. M. Mirabella, Jr., J. Poym. Sci. Part B: Polym. Phys., 25, 591 (1986).
  30. G. Jung, M. Lee, I. Seo, and K. Song, Polymer(Korea), 35, 272 (2011).
  31. G. Jung, I. Seo, M. Lee, S.-W. Choi, and K. Song, Polymer (Korea), 34, 242 (2010).
  32. Y. V. Kissin and L. A. Rishina, Eur. Polym. J., 12, 757 (1988).
  33. M. Lee, M. Y. Shin, S. H. Kim, and K. Song, Polymer(Korea), 35, 493 (2001).
  34. S. Chandrasekhar, Liquid Crystals, 2nd ed, Cambridge University Press, Cambridge, 1992.
  35. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, Canada, 1999.
  36. J. Stohr and M. G. Samant, J. Electron. Spectrosc. Relat. Phenom., 98-99, 189 (1999). https://doi.org/10.1016/S0368-2048(98)00286-2
  37. Y. Inoue, Y. Kuramoto, M. Hattori, M. Adachi, M. Kimura, and T. Akahane, J. Inf. Disp., 12, 125 (2011). https://doi.org/10.1080/15980316.2011.593898

Cited by

  1. Acetylene-containing highly birefringent rod-type reactive liquid crystals based on 2-methylhydroquinone vol.45, pp.2, 2018, https://doi.org/10.1080/02678292.2017.1323127
  2. Enhanced, parallel liquid crystal alignment based on polystyrene substituted with phthalimidoyl groups vol.9, pp.17, 2015, https://doi.org/10.1039/c9ra01131e