DOI QR코드

DOI QR Code

열 이미드화 온도에 따른 작용기화 그래핀/폴리이미드 나노복합재료

Functionalized Graphene/Polyimide Nanocomposites under Different Thermal Imidization Temperatures

  • 주지은 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Ju, Jieun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 투고 : 2014.05.26
  • 심사 : 2014.07.28
  • 발행 : 2015.01.25

초록

폴리이미드(PI) 나노복합체 필름 제조에 사용된 작용기화 4-amino-N-hexadecylbenzamide graphene sheets (AHB-GSs)는 graphene oxide 분산액에 4-amino-N-hexadecylbenzamide(AHB)를 반응시켜 합성하였다. AHB-GS의 주사탐침 현미경(atomic force microscope, AFM) 이미지와 모식도를 통해서 AHB-GS의 평균 두께가 약 3.21 nm임을 확인하였다. PI는 4,4'-biphthalic anhydride와 bis(4-aminophenyl)sulfide를 사용하여 합성하였다. PI 나노복합체는 0-10 wt%의 다양한 함량의 AHB-GS를 용액 삽입(solution intercalation) 방법을 사용하여 합성하였고, 이미드화는 각각 $250^{\circ}C$$350^{\circ}C$까지 열 처리하였다. AHB-GS는 대부분 고분자 매트릭스에 잘 분산되었고 약간 뭉친 것도 있었지만 마이크로미터 수준의 입자는 관찰되지 않았다. TEM으로 관찰하였을 때, 평균적으로 입자의 두께는 10 nm 미만이었다. PI 복합체 필름 중 소량의 AHB-GS만으로도 가스 투과도와 전기 전도도는 향상되었지만, 반대로 유리전이 온도와 초기 분해 온도는 AHB-GS의 함량이 10 wt%까지 증가함에 따라 지속적으로 감소되는 경향을 보였다. 전체적으로는, $250^{\circ}C$까지 이미드화한 PI에 비해 $350^{\circ}C$까지 열처리한 PI 필름이 보다 향상된 특성을 보였다.

4-Amino-N-hexadecylbenzamide-graphene sheets (AHB-GSs), used in the preparation of the polyimide (PI) nanocomposite films, were synthesized by mixing a dispersion of graphite oxide with a solution of the ammonium salt of AHB. The atomic force microscope image of functionalized-GS on mica and a profile plot revealed the average thickness of AHB-GS to be ~3.21 nm. PI films were synthesized by reacting 4,4'-biphthalic anhydride and bis(4-aminophenyl) sulfide. PI nanocomposite films containing various contents of AHB-GS over the range of 0-10 wt% were synthesized using the solution intercalation method. The PI nanocomposite films under different thermal imidization temperatures, 250 and $350^{\circ}C$, were examined. The graphenes, for the most part, were well dispersed in the polymer matrix despite some agglomeration. However, micrometer-scale particles were not detected. The average thickness of the particles was <10 nm, as revealed from the transmission electron microscope images. Only a small amount of AHB-GS was required to improve the gas barrier, and electrical conductivity. In contrast, the glass transition and initial decomposition temperatures of the PI hybrid films continued to decrease with increasing content of AHB-GS up to 10 wt%. In general, the properties of the PI hybrid films heat treated at $350^{\circ}C$ were better than those of films heat treated at $250^{\circ}C$.

키워드

참고문헌

  1. H.-W. Wang, R.-X. Dong, H.-C. Chu, K.-C. Chang, and W.-C. Lee, Mater. Chem. Phys., 94, 42 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.037
  2. X. L. Wang, Y. F. Li, C. L. Gong, T. Ma, and F. C. Yang, J. Fluor. Chem., 129, 56 (2008). https://doi.org/10.1016/j.jfluchem.2007.08.014
  3. Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.041
  4. E. Y. Lee, T. S. Hwang, and J. D. Nam, Polymer(Korea), 36, 448 (2012).
  5. U. K. Min and J.-H. Chang, Polymer(Korea), 34, 495 (2010).
  6. M. Hasegawa, M. Horiuchi, and Y. Wada, High Perform. Polym., 19, 175 (2007). https://doi.org/10.1177/0954008306073178
  7. J.-G. Liu, X.-J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  8. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  9. K. S. Novoselov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  10. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  11. S. Stankovich, D. A. Kidin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 292 (2006).
  12. Y. Zhang, J. W. Tan, K. L. Stormer, and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  13. B. Dittrich, K.-A. Wartig, D. Hofmann, R. Mulhaupt, and B. Schartel, Polym. Adv. Technol., 24, 916 (2013). https://doi.org/10.1002/pat.3165
  14. M. Kumar, J. S. Chung, B.-S. Kong, E. J. Kim, and S. H. Hur, Mater. Lett., 106, 319 (2013). https://doi.org/10.1016/j.matlet.2013.05.059
  15. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  16. M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Phys. Chem. Chem. Phys., 13, 20836 (2011). https://doi.org/10.1039/c1cp22347j
  17. A. Reina, X. Jia, J. Ho, D. Nezich, H. S. V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  18. A. Mattausch and O. Pankratov, Phys. Stat. Sol. (b), 245, 1425 (2008). https://doi.org/10.1002/pssb.200844031
  19. H. C. Schniepp, J.-L. Li, M. J. Mcallister, H. Sai, M. H. Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
  20. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009). https://doi.org/10.1021/nl803798y
  21. G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff, Carbon, 48, 630 (2010). https://doi.org/10.1016/j.carbon.2009.10.003
  22. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, 5 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  23. A. V. Raghu, Y. R. Lee, and H. M. Jeong, Macromol. Chem. Phys., 209, 2487 (2008). https://doi.org/10.1002/macp.200800395
  24. C. Gao, C. D. Vo, Y. Z. Jin, W. Li, and S. P. Armes, Macromolecules, 38, 8634 (2005). https://doi.org/10.1021/ma050823e
  25. D. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010). https://doi.org/10.1039/c0jm00530d
  26. O.-K. Park, J.-Y. Hwang, M. J. Goh, J. H. Lee, B.-C. Ku, and N.- H. You, Macromolecules, 46, 3505 (2013). https://doi.org/10.1021/ma400185j
  27. D. Y. Cai and M. Song, J. Mater. Chem., 20, 7906 (2010). https://doi.org/10.1039/c0jm00530d
  28. W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  29. D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to spectroscopy, Hartcourt, Washington, 2001.
  30. C. Heo and J.-H. Chang, Solid State Sci., 24, 6 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.06.012
  31. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 229 (2010).
  32. M. J. McAllister, J. L. Lim D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater., 19, 4396 (2007). https://doi.org/10.1021/cm0630800
  33. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  34. S. Y. Yang, C. E. Park, and M. S. Jung, Polymer, 44, 3243 (2003). https://doi.org/10.1016/S0032-3861(03)00273-8
  35. C. Heo and J.-H. Chang, Polymer(Korea), 37, 218 (2013).
  36. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  37. S. Mastsui, H. Sato, and T. Nakagawa, J. Memb. Sci., 141, 31 (1998). https://doi.org/10.1016/S0376-7388(97)00286-X
  38. M.-C. Hsiao, S.-H. Liao, M.-Y. Yen, P.-I. Liu, N.-W. Pu, C.-A. Wang, and C. M. Ma, ACS Appl. Mater. Interfaces, 2, 3092 (2010). https://doi.org/10.1021/am100597d
  39. Z. Wei, D. Wang, W. S. Kim, Y. Ju, M. K. Yakes, A. F. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan, and E. Riedo, Science, 328, 1373 (2010). https://doi.org/10.1126/science.1188119
  40. H. S. Kang, A. Kulkarni, S. S. Stankovich, R. S. Ruoff, and S. H. Baik, Carbon, 47, 1520 (2009). https://doi.org/10.1016/j.carbon.2009.01.049

피인용 문헌

  1. Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3072-7