DOI QR코드

DOI QR Code

Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures

  • Byun, Hye Ryoung (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Lee, Chang Lyul (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
  • 투고 : 2015.01.23
  • 심사 : 2015.01.30
  • 발행 : 2015.01.30

초록

The optical properties of InP/GaP short-period superlattice (SPS) structures grown at various temperatures from $400^{\circ}C$ to $490^{\circ}C$ have been investigated by using temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL measurements. The PL peak energy for SPS samples decreases as the growth temperature increases. The decreased PL energy of ~10 meV for the sample grown at $425^{\circ}C$ compared to that for $400^{\circ}C$-grown sample is due to the CuPt-B type ordering, while the SPS samples grown at $460^{\circ}C$ and $490^{\circ}C$ exhibit the significant reduction of the PL peak energies due to the combined effects of the formation of lateral composition modulation (LCM) and CuPt-B type ordering. The SPS samples with LCM structure show the enhanced carrier lifetime due to the spatial separation of carriers. This study represents that the bandgap energy of InP/GaP SPS structures can be controlled by varying growth temperature, leading to LCM formation and CuPt-B type ordering.

키워드

참고문헌

  1. L. V. Asryan, ECS Trans. 25, 9 (2009).
  2. V. A. Odnoblyudov and C. W. Tu, Appl. Phys. Lett. 89, 11922 (2006).
  3. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B 69, 235332 (2004). https://doi.org/10.1103/PhysRevB.69.235332
  4. N. Lebedeva, A. Varpula, S. Novikov, and P. Kuivalainen, Phys. Rev. B 81, 235307 (2010). https://doi.org/10.1103/PhysRevB.81.235307
  5. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). https://doi.org/10.1063/1.3309411
  6. J. Kim, S. Ha, C. Yang, J. Lee, S. Park, W. J. Choi, and E. Yoon, J. Korean Vacuum Soc. 19, 217 (2010). https://doi.org/10.5757/JKVS.2010.19.3.217
  7. H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Korean Vacuum Soc. 18, 474 (2009). https://doi.org/10.5757/JKVS.2009.18.6.474
  8. D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007). https://doi.org/10.1063/1.2713803
  9. K.-H. Kim, J. H. Sim, and I. -H. Bae, J. Korean Vacuum Soc. 18, 208 (2009). https://doi.org/10.5757/JKVS.2009.18.3.208
  10. S. P. Ahrenkiel, A. G. Norman, A. l-. M. M. Jassim, A. Mascarenhas, J. Mirecki Millunchick, R. D. Twesten, S. R. Lee, D. M. Follstaedt, and E. D. Jones, J Appl. Phys. 84, 6088 (1998). https://doi.org/10.1063/1.368921
  11. G. B. String fellow and G. S. Chen, J. Vac. Sci. Technol. B 9, 2182 (1991). https://doi.org/10.1116/1.585761
  12. S. W. Jun, T.-Y. Seong, J. H. Lee, and B. Lee, Appl. Phys. Lett. 68, 3447 (1996).
  13. T.-Y. Seong, A. G. Norman, I. T. Ferguson, J. L. Hutchison, G. R. Booker, R. A. Stradling, and B. A. Joyce, Inst. Phys. Conf. Ser. 117, 485 (1991).
  14. T.-Y. Seong, A. G. Norman, I. T. Ferguson, and G. R. Booker, J. Appl. Phys. 73, 8227 (1993). https://doi.org/10.1063/1.353440
  15. S. Francoeur, M. C. Hanna, A. G. Norman, and A. Mascarenhas, Appl. Phys. Lett. 80, 243 (2002). https://doi.org/10.1063/1.1432754
  16. K. Y. Cheng, K. C. Hsieh, and J. N. Baillargeon, Appl. Phys. Lett. 60, 2892 (1992). https://doi.org/10.1063/1.106810
  17. C. M. Fetzer, R. T. Lee, S. W. Jun, G. B. Stringfellow, S. M. Lee, and T. Y Seong, Appl. Phys. Lett. 78, 1376 (2001). https://doi.org/10.1063/1.1350424
  18. J. D. Song, Y. W. Ok, J. M. Kim, Y. T. Lee, and T. Y. Seong, J. Appl. Phys. 90, 5086 (2001). https://doi.org/10.1063/1.1412267
  19. P. Ernst, C. Geng, G. Hahn, F. Scholz, H. Schweizer, F. Phillipp, and A. Mascarenhas, J. Appl. Phys. 75, 2633 (1996).
  20. H. M. Cheong, A. Mascarenhas, S. P. Ahrenkiel, K. M. Jones, J. F. Geisz, and J. M. Olson, J. Appl. Phys. 83, 5418 (1998). https://doi.org/10.1063/1.367371
  21. S. H. Wei and A. Zunger, Phys. Rev. B 57, 8983 (1998). https://doi.org/10.1103/PhysRevB.57.8983
  22. J. D. Song, Y. W. Ok, J. M. Kim, Y. T. Lee, and T. Y. Seong, Appl. Surf. Science 183, 33 (2001). https://doi.org/10.1016/S0169-4332(01)00543-8
  23. P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang, and A. Mascarenhas, Appl. Phys. Lett. 67, 2347 (1995). https://doi.org/10.1063/1.114340
  24. S.-H. Wei, D. B. Laks, and A. Zunger, Appl. Phys. Lett. 62, 1937 (1993). https://doi.org/10.1063/1.109496
  25. K. W. Park, C. Y. Park, S. Ravindran, S. J. Kang, H. Y. Hwang, Y. D. Jho, Y. R. Jo, B. J. Kim, and Y. T. Lee, J. Appl. Phys. 116, 043516 (2014). https://doi.org/10.1063/1.4891462