References
- Jia, Z. and P. L. Davies (2002) Antifreeze proteins: An unusual receptor-ligand interaction. Trends Biochem. Sci. 27: 101-106. https://doi.org/10.1016/S0968-0004(01)02028-X
- Venketesh, S. and C. Dayananda (2008) Properties, potentials, and prospects of antifreeze proteins. Crit. Rev. Biotechnol. 28: 57-82. https://doi.org/10.1080/07388550801891152
- Barrett, J. (2001) Thermal hysteresis proteins. Int. J. Biochem. Cell Biol. 33: 105-117. https://doi.org/10.1016/S1357-2725(00)00083-2
- Ben, R. N. (2001) Antifreeze glycoproteins-preventing the growth of ice. Chembiochem. 2: 161-166. https://doi.org/10.1002/1439-7633(20010302)2:3<161::AID-CBIC161>3.0.CO;2-F
- Bouvet, V. and R. N. Ben (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem. Biophys. 39: 133-144. https://doi.org/10.1385/CBB:39:2:133
- Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25: 375-388.
- Harding, M. M., P. I. Anderberg, and A. D. Haymet (2003) 'Antifreeze' glycoproteins from polar fish. Eur. J. Biochem. 270: 1381- 1392. https://doi.org/10.1046/j.1432-1033.2003.03488.x
- Lee, J. K., K. S. Park, S. Park, H. Park, Y. H. Song, S. H. Kang, and H. J. Kim (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol. 60: 222-228. https://doi.org/10.1016/j.cryobiol.2010.01.002
- Park, K. S., H. Do, J. H. Lee, S. I. Park, E. Kim, S. J. Kim, S. H. Kang and H. J. Kim (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiol. 64: 286-296. https://doi.org/10.1016/j.cryobiol.2012.02.014
- Lee, J. H., A. K. Park, H. Do, K. S. Park, S. H. Moh, Y. M. Chi, and H. J. Kim (2012) Structural basis for antifreeze activity of icebinding protein from arctic yeast. J. Biol. Chem. 287: 11460-11468. https://doi.org/10.1074/jbc.M111.331835
- Lee, J. H., S. G. Lee, H. Do, J. C. Park, E. Kim, Y. H. Choe, S. J. Han, and H. J. Kim (2013) Optimization of the pilot-scale produc-tion of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 3383-3393. https://doi.org/10.1007/s00253-012-4594-y
- Do, H., J. H. Lee, S. G. Lee, and H. J. Kim (2012) Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68: 806-809. https://doi.org/10.1107/S1744309112020465
- Kim, E. J., H. Do, J. H. Lee, S. G. Lee, H. J. Kim, and S. J. Han (2014) Production of antifreeze protein from Antarctic bacterium Flavobacterium frigoris PS1 by using fed-batch culture of recombinant Pichia pastoris. Kor. Soc. Biotechnol. Bioeng. J. 29: 303-306.
- Han, S. J., S. Cho, K. Lowehhaupt, S. Y. Park, S. J. Sim and Y. G. Kim (2013) Recombinant tagging system using ribosomal frameshifting to monitor protein expression. Biotechnol. Bioeng. 110: 898-904. https://doi.org/10.1002/bit.24740
Cited by
- Pilot-scale Production of Recombinant LeIBP from Arctic Yeast Glaciozyma sp. by Escherichia coli vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.300
- Effects of ice-binding protein from Leucosporidium on the cryopreservation of boar sperm* vol.33, pp.3, 2018, https://doi.org/10.12750/JET.2018.33.3.185