DOI QR코드

DOI QR Code

Effect of NaNO3 and NaHCO3 Concentration on Microglae Arthrospira platensis Growth

NaNO3, NaHCO3 농도가 Arthrospira platensis 생장에 미치는 영향

  • Choi, Soo-Jeong (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Ha, Jong-Myung (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
  • 최수정 (신라대학교 의생명과학대학 제약공학과) ;
  • 하종명 (신라대학교 의생명과학대학 제약공학과) ;
  • 이재화 (신라대학교 의생명과학대학 제약공학과)
  • Received : 2015.08.08
  • Accepted : 2015.12.15
  • Published : 2015.12.27

Abstract

Arthrospira platensis (A. platensis) is one of the most explored cyanobacteria and has been studied for proteins, vitamins, pigment (chlorophyll and carotenoids) and fatty acid. In this study, we tested the effect of $NaHCO_3$ and $NaNO_3$ on the microalgae growth under photoautothrophic culture in A. platensis. As a result, cell growth and dry cell weight were increased in proportion to the $NaHCO_3$ and $NaNO_3$ concentration. Pigment (chlorophyll and carotenoids) contents of A. platensis were increased with proportion to $NaHCO_3$ concentration. But, the content of pigment (chlorophyll and carotenoids) in 100% $NaNO_3$ medium of A. platensis was the highest, 40%, 140% and 200% $NaNO_3$ medium with pigment content of A. platensis was reduced. In conditions of $NaHCO_3$ (50%) or $NaNO_3$ (40%) limitation, A. platensis could accumulate lipids to high as 1.7-fold and 1.3-fold.

Keywords

References

  1. Pirt, S. J. (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosyntehtic growth. New Phytol. 102: 3-37. https://doi.org/10.1111/j.1469-8137.1986.tb00794.x
  2. Benemann, J. R. (1997) $CO_{2}$ mitigation with microalgal systems. Energy convers Mgnt. 22: 475-479.
  3. Micon, A. S., M. C. C. Garcia, A. C. Gomez, F. G. Camacho, E. M. Grima, and Y. Chisti (2003) Shear stress tolerance and biochemical characterization of Peaeodactylum tricounutum inquasi steadystate continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297. https://doi.org/10.1016/S1369-703X(03)00072-X
  4. Henrikson, (1989) Earth food Spirulina. California: Ronore Enterprises Inc, 180.
  5. Estrada, J. E., P. Bescos, and A. M. Villar Del Fresno (2001) Antioxidant activigy of different frractions of Spirulina platensis protean extract. IL Farmaco, 56: 497-500. https://doi.org/10.1016/S0014-827X(01)01084-9
  6. Miranda, M. S., R. G. Cintra, S. B. M. Barros, and J. M. Filho (1998) Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 31: 1075-1079. https://doi.org/10.1590/S0100-879X1998000800007
  7. Wijffels, R. H. and M. J. Barbosa (2010) An outlook on microalgal biofuels. Science 329: 796-799. https://doi.org/10.1126/science.1189003
  8. Vicente, G., M. Martinez, and J. Aracil (2004) Integrated biodisel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305. https://doi.org/10.1016/j.biortech.2003.08.014
  9. Karkos, P. D., S. C. Leong, C. D. Karkos, N. Siraji, and D. A. Assimkapoulos (2008) Review of Spirulina inclinical practice: Evidence- based human applications. Evid. base Compl. Alternative Med. 14: 1-4. https://doi.org/10.1089/acm.2007.0825
  10. Choi, S.-J., Y.-H. Kim, A. Kim, and J.-H. Lee (2013) Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition. Appl. Chem. Eng. 24: 628-632. https://doi.org/10.14478/ace.2013.1085
  11. Miron, A. S., F. G. Gamacho, Z. C. Gomez, E. M. Grima, and Y. Chisti (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J. 46: 1872-1887. https://doi.org/10.1002/aic.690460915
  12. Chiu, S., C. Kao, M. Tsai, S. Ong, C. Chen, and C. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-839. https://doi.org/10.1016/j.biortech.2008.06.061
  13. Danesi, E. D. G., C. O. R. Yagui, J. C. M. Carvalho, and S. Sato (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 102: 329-335.
  14. Cullen, J. J., X. Yang, and H. L. Macintyre (1992) Nutrient limitation and marine photosynthesis. In Primary Productivity and Biochemical Cycles in the sea, 69-88, Plenum Press.
  15. Brennan, L. and P. Owende (2010) Biofuels form microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust. Energ. Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  16. Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. E. Borghi (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146- 1151. https://doi.org/10.1016/j.cep.2009.03.006
  17. Shen, Y., Z. Pei, W. Yuan, and E. Mao (2009) Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng. 2: 51-57.
  18. Geider, R. J., J. L. Roche, R. M. Greene, and M. Olaizola (1993) Response of the photosynthetic apparatus of Phaeodactylum triocormutum (Bacillario-phyceae) to nitrate, phosphate and iron starvation. J. Phycol. 29: 755-766. https://doi.org/10.1111/j.0022-3646.1993.00755.x
  19. Joo, S.-J., S. Zhang, K. J. Choi, S. M. Lee, and S.-J. Hwang (2014) Effects of sodium bicarbonate as an inorganic carbon source on the growth of Scenedesmus dimorphus. J. KSWW 28: 555-560.
  20. Goldberg, I. K. and Z. Cohen (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010
  21. Choi, S.-J. and J.-H. Lee (2015) Characteristic of Arthrospira platensis enhanced antioxidant activity. Kor. Soc. Biotechnol. Bioeng. J. 30: 119-124.
  22. Moon, S.-R., B.-K. Son, J.-O. Yang, J.-S. Woo, C. M. Yoom, and G.-H. Kim (2010) Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129.
  23. Chiu, S.-Y., C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, and C.- S. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  24. Chen, W., M. Sommerfeld, and Q. Hu (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102: 135. https://doi.org/10.1016/j.biortech.2010.06.076
  25. Bertozzini, E., L. Galluzzi, A. Penna, and M. magnani (2011) Application of the standard addition method for the absolute quantification of newtural lipids in microalge using Nile red. J. Microbiol. Methods 87: 17. https://doi.org/10.1016/j.mimet.2011.06.018
  26. Jitendra, M., S. Priyanka, J. Madhulika, S. Mohsina, M. Komal, and K. Neha (2012) Impact of different physical and chemical environment for mass production of Spirulina platensis -an immunity promotor. I. Res. J. Biological Sci. 1: 49-56.
  27. Li, X., H.-Y. Hu, K. Gan, and Y.-X. Sun (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a fresh water microalga Scenedesmus sp.. Bioresour. Technol. 101: 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  28. Schmidt, L. E. and P. J. Hansen (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phace and pH. Mar. Ecol. Prog. Ser. 216: 67-81. https://doi.org/10.3354/meps216067
  29. Colla, L. M., C. O. Reinehr, C. Reichert, and J. A. V. Costa (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493. https://doi.org/10.1016/j.biortech.2005.09.030
  30. Feng, D.-L., Z.-C. Wu, and D.-H. Wang (2007) Effects of N source and nitrification pretreatment on growth of Arthrospira platensis in human urine. J. Zheijang Univ. Sci. A 8: 1846-1852. https://doi.org/10.1631/jzus.2007.A1846
  31. Sharma, G., M. Kumar, M. I. Ali, and N. D. Jasuja (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J. Microb. Biochem. Technol. 6: 202-206.
  32. Chauhan, S., V. Kaithwas, R. Kachouli, and S. Bhargava (2013) Productivity of the cyanobacterium Spirulina platensis in culture using high bicarbonate and different nitrogen sources. American J. Plant. Physiol. 8: 17-31. https://doi.org/10.3923/ajpp.2013.17.31
  33. Vonshak, A., N. Kancharaksa, B. Bunnag, and M. Tahicharoen (1996) Role of light and photosynthesis on the acclimation process of the cyanobacteria Spirulina platensis to salinity stress. J. Appl. Phycol. 8: 119-124. https://doi.org/10.1007/BF02186314
  34. Kim, Y.-H., S.-J. Choi, H.-J. Park, and J.-H. Lee (2014) Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. Ind. Eng. Chem. 20: 1834-1840. https://doi.org/10.1016/j.jiec.2013.08.039
  35. Ordog, V., W. A. Stirk, P. Balint, J. V. Staden, and C. Lovasz (2012) Change in lipid, protein and pigment concentrations in nitrogenstressed Chlorella minutissima cultures. J. Appl. Phycol. 24: 907-914. https://doi.org/10.1007/s10811-011-9711-2
  36. Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleabundans. Appl. Micobiol. Biotechnol. 81: 629-636. https://doi.org/10.1007/s00253-008-1681-1
  37. Boussiba, S., B. Wang, P. P. Yuan, A. Zarka, and F. Chen (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604. https://doi.org/10.1023/A:1005507514694
  38. Guiheneuf, F., V. Mimouni, L. Ulmann, and G. Tremblin (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol. 369: 136-143. https://doi.org/10.1016/j.jembe.2008.11.009
  39. Xia, L., J. Rong, H. Yang, Q. He, D. Zhang, and C. Hu (2014) NaCl as an effective inducer for lipid accumulation in fresh microalgae Desmodesmus abundans. Bioresour. Technol. 161: 402-409. https://doi.org/10.1016/j.biortech.2014.03.063
  40. Gill, I. and R. Valiverty (1997) Polyunsaturated fatty acids: Occurrence, biological activities and application. Trends Biotechnol. 15: 401-409. https://doi.org/10.1016/S0167-7799(97)01076-7
  41. Feng, D., Z. Chen, S. Xue, and W. Zhang (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol. 102: 6710-6716. https://doi.org/10.1016/j.biortech.2011.04.006
  42. Kim, G. R., G. Mujtaba, M. Rizwan, and K. S. Lee (2014) Environmental stress strategies for stimulating lipid production from microalgae for biodisel. Appl. Chem. Eng. 25: 553-558. https://doi.org/10.14478/ace.2014.1125