DOI QR코드

DOI QR Code

Antioxidant Activity of the Halophyte Ligustrum japonicum

염생식물 광나무(Ligustrum japonicum)의 항산화 활성

  • Baek, Seung Oh (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Kim, Hojun (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Jeong, Heejeong (Ocean Science & Technology School, Korea Maritime & Ocean University) ;
  • Ju, Eunsin (Division of Marine Bioscience, Korea Maritime & Ocean University) ;
  • Kong, Chang-Suk (Department of Food and Nutrition, College of Medical & Life Sciences, Silla University) ;
  • Seo, Youngwan (Division of Marine Bioscience, Korea Maritime & Ocean University)
  • 백승오 (한국해양대학교 해양생명과학부) ;
  • 김호준 (한국해양대학교 해양생명과학부) ;
  • 정희정 (한국해양대학교 해양과학기술전문대학원) ;
  • 주은신 (한국해양대학교 해양생명과학부) ;
  • 공창숙 (신라대학교 식품영양학과) ;
  • 서영완 (한국해양대학교 해양생명과학부)
  • Received : 2015.10.17
  • Accepted : 2015.12.07
  • Published : 2015.12.27

Abstract

Dried samples of Ligustrum japonicum were extracted twice: with methylene chloride and with methanol (MeOH), respectively. The combined crude extracts were successively fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions by liquid-liquid partition. Antioxidant activities of crude extract and its solvent fractions were evaluated by measuring authentic $ONOO^-$, and $ONOO^-$ generated from 3-morpholinsydnonimine (SIN-1) as well as degree of occurrence of intracellular ROS in HT 1080 cells, and genomic DNA oxidation. The 85% aq.MeOH and n-BuOH fractions exhibited the good antioxidant activity. Further purification of the 85% aq.MeOH fracition led to the isolation of Oleanolic acid (1), Maslinic acid (2), and Ursolic acid (3). All compounds showed the significant antioxidant effects in all assay systems.

Keywords

References

  1. Power, S. T. and M. J. Jackson (2008) Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 88: 1243-1276. https://doi.org/10.1152/physrev.00031.2007
  2. Barbieri, E. and Sestili, P. (2012) Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct. 2012: 1-17.
  3. da Silva, F. M., A. Marques, and A. Chaveiro (2010) Reactive oxygen species: A double-edged sword in reproduction. Open Vet. Sci. J. 4: 127-133. https://doi.org/10.2174/1874318801004010127
  4. Sung, C., Y. Hsu, C. Chen, Y. Lin, and C. Wu (2013) Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid. Med. Cell Longev. 2013: 1-15.
  5. Alfadda, A. A. and Sallam, R. M. (2012) Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 1-14.
  6. Gutierrez, J. and M. S. V. Elkind (2012) Chronic inflammatory diseases and stroke: Evidence for heterogeneous mechanisms. Ann. Neurol. 72: S6-S7.
  7. Choi, U., D.-H. shin, Y-S Chang, and J. I Shin (1992) Screening of natrura antioxidant from plant and their antioxidative effect. Korea J. Food Sci. Technol. 24: 142-148.
  8. Karre, L., K. Lopez, and K. J. Getty (2013) Natural antioxidants in meat and poultry products. Meat Sci. 94: 220-227. https://doi.org/10.1016/j.meatsci.2013.01.007
  9. Jo, J.-O. and I.-C. Jung (2006) Phenolic compounds of Ligustrum japonicum leaves. J. Korea Soc. Food Sci. Nutr. 35: 713-720. https://doi.org/10.3746/jkfn.2006.35.6.713
  10. Kim, Y. J., Y. R. Lee, J. W. Cheon, and H. S. Lee (2010) Antiaging effect of Ligustrum japonicum extract in the human fibroblast cells. J. Soc. Cosmet. Scientists Korea 36: 295-301.
  11. Sung, S. Y., E. S. Kim, K. Y. Lee, M. K. Lee, Y. C. Kim (2006) A new neuroprotective compound of Ligustrum japonicum leaves. Planta Med. 72: 62-64. https://doi.org/10.1055/s-2005-873140
  12. Papoti, V. T., K. Pegklidou, E. Perifantsi, N. Nenadis, V. J. Demopoulos, and M. Z. Tsimidou (2011) Antioxidant and aldose reductase inhibition activity of Ligustrum japonicum and Olea europaea L. leaf extracts. Eur. J. Lipid Sci. Technol. 113: 876-885. https://doi.org/10.1002/ejlt.201100011
  13. Kooy, N. W., J. A. Royall, H. Ischiropoulos, and J. S. Beckman (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16:149-156. https://doi.org/10.1016/0891-5849(94)90138-4
  14. Okimoto, Y., A. Watanabe, E. Niki, T. Yamashita, and N. Noguchi (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137-140.. https://doi.org/10.1016/S0014-5793(00)01587-8
  15. Miline, L., P. Nicotera, S. Orrenius, and M. Burkitt (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Prooxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102-109. https://doi.org/10.1006/abbi.1993.1327
  16. Werner, S., S. Nebojsa, W. Robert, S. Robert, and K. Olaf (2003) Complete assignments of $^{1}H$ and $^{13}C$ NMR resonances of oleanolic acid, $18{\alpha}$-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem 41: 636-638. https://doi.org/10.1002/mrc.1214
  17. Ibrahim, T. B. and O. S. Francis (2013) Ubiquitous ursolic acid: a potential pentacyclic triterpene natural product. J. Pharmacogn. Phytochem. 2: 214-222.
  18. Woo, K. W., J. Y. Han, S. U. Choi, K. H. Kim, and K. R. Lee (2014) Triterpenes from Perilla frutescens var. acuta and their cytotoxic activity. Natural Product Sciences 20: 71-75.
  19. Choudhary, A., A. K. Mittal, M. Radhika, D. Tripathy, A. Chatterjee, U. C. Banerjee, and I. P. Singh (2013) Two new stereoisomeric antioxidant triterpenes from Potentilla fulgens. Fitoterapia 91: 290-297. https://doi.org/10.1016/j.fitote.2013.09.008
  20. D'Abrosca, B., A. Fiorentino, P. Monaco, P. Oriano, and S. Pacifico (2006) Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem. 98: 285-290. https://doi.org/10.1016/j.foodchem.2005.05.072
  21. Ramachandran, S. and N. R. Prasad (2008) Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem. Biol. Interact. 176: 99-107. https://doi.org/10.1016/j.cbi.2008.08.010
  22. Montilla, M. P., A. Agil, M. C. Navarro, M. I. Jimnez, A. Garca- Granados, A. Parra, and M. M. Cabo (2003) Antioxidant activity of Maslinic acid, a triterpene derivative obtained from Olea europaea. Planta Med. 69: 470-472. https://doi.org/10.1055/s-2003-39719
  23. Liu, C.-H., M.-H. Yen, S.-F. Tsang, K.-H. Gan, H.-Y. Hsu, and C.- N. Lin (2010) Antioxidant triterpenoids from the stems of Momordica charantia. Food Chem. 118: 751-756. https://doi.org/10.1016/j.foodchem.2009.05.058
  24. Qiao, A., Y. Wang, L. Xiang, Z. Zhang, and X. He (2014) Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity. Fitoterapia 98: 137-142. https://doi.org/10.1016/j.fitote.2014.07.020
  25. Qiao, A., Y. Wang, L. Xiang, Z. Zhang, and X. He (2015) Novel triterpenoids isolated from hawthorn berries functioned as antioxidant and antiproliferative activities. J. Funct. Foods 13: 308-313. https://doi.org/10.1016/j.jff.2014.12.047

Cited by

  1. Evaluation of MMP Inhibitors Isolated from Ligustrum japonicum Fructus vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030604
  2. Study on Classification and Ecological Characteristics of Halophyte in Tidal Flat Using Remote Sensing Technique: Application to Marine Spatial Planning vol.22, pp.1, 2015, https://doi.org/10.7846/jkosmee.2019.22.1.34
  3. Ligustrum japonicum Thunb. Fruits Exert Antiosteoporotic Properties in Bone Marrow-Derived Mesenchymal Stromal Cells via Regulation of Adipocyte and Osteoblast Differentiation vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8851884