DOI QR코드

DOI QR Code

SHADOWABLE CHAIN COMPONENTS AND HYPERBOLICITY

  • Lee, Manseob (Department of Mathematics Mokwon University) ;
  • Lee, Seunghee (Department of Mathematics Chungnam National University) ;
  • Park, Junmi (Department of Mathematics Chungnam National University)
  • 투고 : 2013.11.25
  • 발행 : 2015.01.31

초록

We show that $C^1$-generically, the shadowable chain component of a $C^1$-vector field containing a hyperbolic periodic orbit is hyperbolic if it is locally maximal.

키워드

참고문헌

  1. A. Arbieto, L. Senos, and T. Sodero, The specification property for flows from the robust and generic viewpoint, J. Differential Equations 253 (2012), no. 1, 1893-1909. https://doi.org/10.1016/j.jde.2012.05.022
  2. C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1, 33-104. https://doi.org/10.1007/s00222-004-0368-1
  3. C. Bonatti and L. Diaz, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu 7 (2008), no. 3, 469-525.
  4. S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and ${\Omega}$-stability conjectures for flows, Ann. of Math. 145 (1997), no. 1, 81-137. https://doi.org/10.2307/2951824
  5. K. Lee, M. Lee, and S. Lee, Hyperbolicity of expansive homoclinic classes, preprint.
  6. K. Lee, L. Tien, and X. Wen, Robustly shadowable chain component of $C^1$-vector fields, J. Korean Math. Soc. 51 (2014), no. 1, 17-53. https://doi.org/10.4134/JKMS.2014.51.1.017
  7. K. Moriyasu, K. Sakai, and N. Sumi, Vector fields with topological stability, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3391-3408. https://doi.org/10.1090/S0002-9947-01-02748-9
  8. R. Ribeiro, Hyperbolicity and types of shadowing for $C^1$ generic vector fields, arXiv: 1305.2977v1.
  9. K. Sakai, $C^1$-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029.
  10. L. Senos, Generic Bowen-expansive flows, Bull. Braz. Math. Soc. 43 (2012), no. 1, 59-71. https://doi.org/10.1007/s00574-012-0005-3
  11. L. Wen, S. Gan, and X. Wen, $C^1$-stably shadowable chain components are hyperbolic, J. Differential Equations 236 (2009), no. 1, 340-357.