Acknowledgement
Supported by : Korea Foundation for the Advancement of Science & Creativity (KOFAC)
References
- J. Bondy and U. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
-
X. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with
${\Delta}$ = 3, Discrete Math. 308 (2008), no. 17, 4003-4007. https://doi.org/10.1016/j.disc.2007.07.091 - M. Chen and X. Guo, Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes, Inform. Process. Lett. 109 (2009), no. 12, 599-602. https://doi.org/10.1016/j.ipl.2009.02.006
- X. Chen and Z. Zhang, AVDTC numbers of generalized Halin graphs with maximum degree at least 6, Acta Math. Appl. Sin. Engl. Ser. 24 (2008), no. 1, 55-58. https://doi.org/10.1007/s10255-005-5222-8
-
X. Chen, Z. Zhang, and Y. Sun, A note on adjacent-vertex-distinguishing total chromatic numbers for
$P_m{\times}P_n$ ,$P_m{\times}C_n$ and$C_m{\times}C_n$ , J. Math. Res. Exposition 28 (2008), no. 4, 789-798. - G. Dirac, Map-colour theorems, Canad. J. Math. 4 (1952), 480-490. https://doi.org/10.4153/CJM-1952-043-9
- J. Gross and T. Tucker, Topological Graph Theory, Wiley, New York, 1987.
- D. Huang, W. Wang, and C. Yan, A note on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Math. 312 (2008), no. 24, 3544-3546. https://doi.org/10.1016/j.disc.2012.08.006
- F. Hughes and G. MacGillivray, The achromatic number of graphs: a survey and some new results, Bull. Inst. Combin. Appl. 19 (1997), 27-56.
- J. Hulgan, Concise proofs for adjacent vertex-distinguishing total colorings, Discrete Math. 309 (2009), no. 8, 2548-2550. https://doi.org/10.1016/j.disc.2008.06.002
- T. Jensen and B. Toft, Graph Coloring Problems, Wiley-Interscience, New York, 1995.
-
H. Li, B. Liu, and G. Wang, Neighbor sum distinguishing total colorings of
$K_4$ -minor free graphs, Front. Math. China 8 (2013), no. 6, 1351-1366. https://doi.org/10.1007/s11464-013-0322-x - C. P. de Mello and V. Pedrotti, Adjacent-vertex-distinguishing total coloring of indif- ference graphs, Mat. Contemp. 39 (2010), 101-10.
- M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica 18 (1998), no. 2, 241-280. https://doi.org/10.1007/PL00009820
- M. Pilsniak and M. Wozniak, On the adjacent-vertex-distinguishing index by sums in total proper colorings, Graphs Combin. DOI 10.1007/s00373-013-1399-4.
- C. Thomassen, Chromatic graph theory, Challenges for the 21st century (Singapore, 2000), 183-195, World Sci. Publishing, River Edge, NJ, 2001.
- V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964), 25-30.
- W. Wang and D. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014), 379-396. https://doi.org/10.1007/s10878-012-9527-2
- Y. Wang and W. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010), no. 2, 123-133. https://doi.org/10.1007/s10878-008-9165-x
-
T. Van Zandt, PSTricks: PostScript macros for generic
$T_EX$ , Available at ftp://ftp.princeton.edu/pub/tvz/. - Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu, and J. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. China Math. 48 (2005), no. 3, 289-299. https://doi.org/10.1360/03YS0207