EXPERIMENTAL
Materials
All the organometallic and organoaluminum reagents used in this work, except Al(t-Bu)3, were purchased from Aldrich. THF solvent was freshly distilled and used.
General Procedure
The solution of AlX3 (1.0 mmol) was added to the solution of quinoline (1.0 mmol) in THF (2 mL) at 0 ºC under nitrogen atmosphere. The reaction mixture was stirred for 1 h at room temperature. The resulting mixture was then cooled to -78 ºC and the organometallic reagent (1.1 mmol) was added dropwise to the reaction mixture. After THF solution was stirred for another 12 h at -78 ºC, the reaction was then quenched with water (2 mL) at -78 ºC. The resulting mixture was stirred for additional 4 h at room temperature. THF was evaporated under reduced pressure and CH2Cl2 (2 mL) was added to the resulting mixture. The organic layer was separated and dried over MgSO4. The dichloromethane solution was filtered and evaporated. The crude reaction mixture was purified column chromatography (ethyl acetate:hexane, 1:20) to give the homologated product as a either colorless oil or white solid.
2-t-Butylquinoline 110
Colorless oil; 1H NMR (300 MHz, CDCl3): δ 1.5 (s, 9H, (CH3)3),7.5 (m, 2H, Ar-H), 7.7 (m, 1H, Ar-H), 7.8 (d, J = 8.4 Hz, 1H, Ar-H), 8.1 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 30.1, 38.1, 118.2, 125.6, 126.4, 127.2, 129.0, 129.4, 135.9, 147.4, 169.2 ppm.
4-t-Butyl-1,2,3,4-tetrahydroquinoline 213
Colorless oil; 1H NMR (300 MHz, CDCl3): δ 0.98 (s, 9H (CH3)3), 1.8 (m, 1H, H-3), 2.2 (m, 1H, H-3′), 2.5 (dd, J = 2.4 and 5.4 Hz, 1H, H-4), 3.4 (m, 2H, H-2), 3.8 (s, 1H, NH), 6.5 (d, J = 7.8 Hz, 1H, Ar-H), 6.6, (m, 1H, Ar-H), 7.0 (m, 2H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 23.6, 29.1, 35.0, 39.4, 45.3, 113.4, 115.1, 122.4, 127.0, 131.2, 144.8 ppm; m/z (EI): 189 (M+, 20%), 132 ((M-t-Bu)+, 100%).
2-(4-Methoxyphenyl)quinoline 315
White solid; mp: 122-123 °C (lit15: 122-124 °C); 1H NMR (300 MHz, CDCl3): δ 3.9 (s, 3H, OMe), 7.1 (m, 2H, Ar-H), 7.5 (m, 1H, Ar-H), 7.7 (m, 1H, Ar-H), 7.8 (m, 2H, Ar-H), 8.2 (m, 4H, Ar-H); 13C NMR (75 MHz, CDCl3): δ 55.4, 114.2, 118.6, 125.9, 126.9, 127.4, 128.9, 129.5, 132.3, 136.6, 148.3, 156.9, 160.8 ppm.
References
- Kayser, O.; Kiderlen, A.; Croft, S. Parasitol. Res. 2003, 90, S55. https://doi.org/10.1007/s00436-002-0768-3
- Michael, J. P. Nat. Prod. Rep. 1999, 16, 697. https://doi.org/10.1039/a809408j
- Fetzner, S. Appl. Microbiol. Biotechnol. 1998, 49, 237. https://doi.org/10.1007/s002530051164
- Cragg, G. M.; Newman, D. J. J. Ethnopharmacol. 2005, 100, 72. https://doi.org/10.1016/j.jep.2005.05.011
- Crawforth, C.; Meth-Cohn, O.; Russell, C. J. Chem. Soc., Chem. Commun. 1972, 259.
- Eisch, J. J.; Comfort, D. R. J. Organomet. Chem. 1972, 38, 209. https://doi.org/10.1016/S0022-328X(00)83319-7
- Eisch, J. J.; Comfort, D. R. J. Organomet. Chem. 1972, 43, C17. https://doi.org/10.1016/S0022-328X(00)81585-5
- Seo, H. J.; Yoon, S. J.; Jang, S. H.; Namgoong, S. K. Tetrahedron Lett. 2011, 52, 3747. https://doi.org/10.1016/j.tetlet.2011.05.045
- Seo, H. J.; Namgoong, S. K. Tetrahedron Lett. 2012, 53, 3594. https://doi.org/10.1016/j.tetlet.2012.05.002
- Parekh, V.; Ramsden, J. A.; Wills, M. Tetrahedron: Asymmetry. 2010, 21, 1549. https://doi.org/10.1016/j.tetasy.2010.03.053
- Goldstein, S. W.; Dambek, P. J. Synthesis. 1989, 221.
- Louërat, F.; Fort, Y.; Mamane, V. Tetrahedron Lett. 2009, 50, 5716. https://doi.org/10.1016/j.tetlet.2009.07.125
- Degrand, C.; Lund, H. Acta Chem. Scand. 1977, 31, 593.
- Hamdemir, I. K.; Özkar, S.; Finke, R. G. J. Mol. Catal. A: Chem. 2013, 378, 333. https://doi.org/10.1016/j.molcata.2013.07.005
- Su, W.; Yu, J.; Li, Z.; Zheng, B. Synlett. 2010, 8, 1281.
- Rueping, M.; Theissmann, T.; Stoeckel, M.; Antonchick, A. P. Organic & biomolecular chemistry. 2011, 9, 6844. https://doi.org/10.1039/c1ob05870c
- Mani, N. S.; Chen, P.; Jones, T. K. J. Org. Chem. 1999, 64, 6911. https://doi.org/10.1021/jo990586b
- Minter, D. E.; Stotter, P. L. J. Org. Chem. 1981, 46, 3965. https://doi.org/10.1021/jo00333a007