DOI QR코드

DOI QR Code

인지무선네트워크를 위한 위임기반 인증 프로토콜

Delegation-based Authentication Protocol for Cognitive Radio Network

  • 김현성 (경일대학교 사이버보안학과)
  • 투고 : 2014.10.11
  • 심사 : 2014.12.23
  • 발행 : 2015.01.25

초록

인지무선네트워크(Cognitive Radio Networks, CRNs)는 네트워크 환경을 인지하고 적응적으로 운용할 수 있는 지능형 무선 네트워킹을 제공하기 위한 기술로 인지되고 있다. CRN은 FCC(Federal Communications Commission)의 최근 정책으로 인해 비인가된 사용자가 네트워크의 주사용자를 방해하지 않는 한 유휴 스펙트럼을 활용할 수 있도록 허락하는 기술이다. 그러므로 CRNs의 보안 특성은 다른 네트워크와 달라야만 한다. 본 논문의 목적은 Tsai등의 위임기반 인증 프로토콜(TDAP)로부터 CRN상의 비인가된 사용자를 위한 보안의 특성을 추출함으로서 새로운 위임기반 인증 프로토콜(NDAP)을 제안하는데 있다. 먼저 TDAP에 대한 보안분석을 제시하고 비인가 사용자 인증을 위한 프로토콜 설계 목표를 설정한다. 그런 후 TDAP에 대한 보안 해결책과 CRNs를 위한 새로운 프로토콜로서 NDAP을 제안한다. 본 논문에서 제안한 NDAP은 CRNs과 다양한 융합응용의 보안 기반 구조로 활용될 수 있을 것이다.

Cognitive radio networks (CRNs) offer the promise of intelligent radios that can learn from and adapt to their environment. CRN permits unlicensed users to utilize the idle spectrum as long as it does not introduce interference to the primary users due to the Federal Communications Commission's recent regulatory policies. Thereby, the security aspects in CRNs should be different with the other networks. The purpose of this paper is to devise a new delegation-based authentication protocol (NDAP) by extracting out the security aspects for unlicensed user authentication over CRNs from Tsai et al's delegation-based authentication protocol (TDAP). First of all, we will provide security analyses on the TDAP and set design goal for unlicensed user authentication. Then, we will propose a NDAP as a remedy mechanism for the TDAP and a new protocol for CRNs. The NDAP could be used as a security building block for the CRNs and various convergence applications.

키워드

참고문헌

  1. J. Mitola, "Cognitive Radio for Flexible Mobile Multimedia Communications," Mobile Network and Applications, Vol. 6, No. 5, pp. 435-441, 2001. https://doi.org/10.1023/A:1011426600077
  2. H. Kim, "Security Standard Status for Cognitive Radio Networks-focused on IEEE 802.22 WRAN," Review of KIISC, Vol, 19, No. 5, pp. 65-69, 2009.
  3. H. Kim, S. W. Lee, "Investigations of Security Framework for Cognitive Radio Network focused on IEEE 802.22 WRAN," Journal of Security Engineering, Vol. 6, No. 1, pp. 25-38, 2009.
  4. I. F. Akyildiz, W. Lee, and K. R. Chowdhury, "CRAHNs: Cognitive radio ad hoc networks," AD hoc networks, Vol. 7, pp. 810-836, 2009. https://doi.org/10.1016/j.adhoc.2009.01.001
  5. IEEE 802.22, IEEE P802.22/D1.0 draft standard for wireless regional area networks part 22: Cognitive wireless RAN medium access control(MAC) and physical layer(PHY) specifications: Policies and procedures for operation in the TV bands, Apr. 2008.
  6. J. Wang, M. S. Song, S. Santhiveeran, K. Lim, S. H. Hwang, M. Ghosh, V. Gaddam, and K. Challapali, "First Cognitive Radio Networking Standard for Personal/Portable Devices in TV White Spaces," Ecma/TC48-TG1/2009/132, white paper, 2009.
  7. D. Jang, H. Kim, "Security Standardization Status of Ecma-International for Personal/ Portable Devices supporting Cognitive Radio Networking," Journal of Security Engineering, Vol. 8, No. 5, pp. 553-565, 2011.
  8. T. C. Clancy, N. Goergen, "Security in cognitive radio networks: Threats and mitigation," Proc. of CrownCom 2008, pp. 1-8, 2008.
  9. R. Chen, J. Park, "Ensuring trustworth spectrum sensing in cognitive radio networks," IEEE Workshop on Networking Technologies for SDR 2006, pp. 110-119, 2006.
  10. H. Kim, "Design of Security Framework for Cognitive Radio Network," Proc. of 2012 Conference on Convergence/Smart/Cloud computing, pp. 23-27, 2012.
  11. H. Kim, "Security Aspects Analysis for Secondary User Authentication over Cognitive Radio Network," Proc. of 2013 Conference on Convergence/Smart/Cloud computing, pp. 56-59, 2014.
  12. H. Kim, "Analysis on Delegation-based Authentication Protocol for Wireless Roaming Service," Proc. of 2014 Conference on Convergence/Smart/Cloud computing, pp. 83-86, 2014.
  13. H. Kim, "Design of Adaptive Security Framework based on Carousel for Cognitive Radio Network," Journal of The Institute of Electronics Engineers of Korea, Vol. 50, No. 5, pp. 165-172, 2013. https://doi.org/10.5573/ieek.2013.50.5.165
  14. H. Kim, "Location-based authentication protocol for first cognitive radio networking standard," Journal of Network and Computer Applications, Vol. 34, pp. 1160-1167, 2011. https://doi.org/10.1016/j.jnca.2010.12.017
  15. W. B. Lee, C. K. Yeh, "A new delegation-based authentication protocol for use in portable communication systems," IEEE Transactions on Wireless Communications, Vol. 4, No. 1, pp. 57-64, 2005. https://doi.org/10.1109/TWC.2004.840220
  16. C. Tang, D. O. Wu, "An efficient mobile authentication scheme for wireless networks," IEEE Transactions on Wireless Communications, Vol. 7, No. 4, pp. 1408-1416, 2008. https://doi.org/10.1109/TWC.2008.061080
  17. J. L. Tsai, N. W. Lo, T. C. Wu, "Secure Delegation-Based Authentication Protocol for Wireless Roaming Service," IEEE Communications Letters, Vol. 16, No. 7, pp. 1100-1102, 2012. https://doi.org/10.1109/LCOMM.2012.052112.120525
  18. BWN Lab. GeorgiaTech, http://www.ece.gatech.edu/research/labs/bwn.
  19. P. Kocher, J. Jaffe, B. Jun, "Differential Power Analysis", Lecture Notes in Computer Science, Vol. 1666, pp. 388-397, 1999.
  20. F. X. Standaert, T. G. Malkin, M. Yung, "A unified framework for the analysis of side-channel key recovery attacks," Lecture Notes in Computer Science, Vol. 5479, pp. 443-461, 2009.