DOI QR코드

DOI QR Code

평판형 고체산화물 연료전지의 CFD 성능해석에서 공기유량변화의 영향

Effect of Air Flow Rate on the Performance of Planar Solid Oxide Fuel Cell using CFD

  • Kim, Danbi (Department of Chemical Engineering, Kwangwoon University) ;
  • Han, Kyoungho (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2015.09.01
  • 심사 : 2015.10.21
  • 발행 : 2015.11.30

초록

고체산화물 연료전지는 다양한 응용분야에서 대체에너지로서 각광받고 있다. 본 논문은 평판형 anode 전극으로 들어가는 공기유량에 따른 SOFC의 I-V 그래프 특성에 대해 연구하였다. 본 연구를 위해, Butler-Volmer 반응속도 식이 상용 CFD코드인 FLUENT에 적용되었다. CFD로부터 얻어진 결과값은 문헌으로부터 참고한 실험데이터와 0.4 V ~ 1 V 범위에서 I-V 분극곡선이 잘 맞는 것을 보여줌으로써 그 유효성을 확인하였다. 연료전지의 수치적 계산은 각각 다른 유량조건 하에서 3D 구조를 이용하여 수행하였다. 결과는 수소, 산소 그리고 물의 농도 분포의 항목으로 제시하였다. 전산모사와 그 결과들은 Butler-Volmer 방정식을 사용자 정의 함수로 적용한 CFD기법이 공기 유량과 비표면적에 대한 조건을 확인하는데 사용될 수 있고, 작동조건 연구를 위한 지침이 됨으로써 연료전지 시스템의 성능을 향상시킬 수 있음을 보여준다.

Solid Oxide Fuel Cells (SOFC) continue to be among the most promising alternative energy devices. This paper addresses i-V characteristics of SOFC with a focus on air flow rate along the planar anode electrodes. To address this, detailed Butler-Volmer kinetics are implemented in a general-purpose CFD code FLUENT. The numerical results were validated against experimental data from the literature showing excellent match with i-V polarization data ranging 1V-0.4V. Numerical calculations of fuel cell operation under different flow rare conditions were performed in three-dimensional geometries. Results are presented in terms of concentration distribution of hydrogen, oxygen, and water. The simulations and results indicate that advanced CFD with UDF(User-Defined Function) of Butler-Volmer kinetics can be used to identify the conditions leading to air flow rate and specific surface area and guide development of operating conditions and improve the fuel cell system performance.

키워드

참고문헌

  1. Sung Ann Hong, 'Hydrogen fuel cell Present technology and Future', Journal of The Korean Society for New and Renewable Energy, 1, 24 (2005).
  2. In Woo Jang, 'Three-dimensional finite volume analysis for the anode-supported flat-tubular solid oxide fuel cell performance', M. D Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2012).
  3. J.R Ferguson, J.M. Fiard, and R. Herbin, 'Threedimensional numerical simulation for various geometries of solid oxide fuel cells', Journal of power Sources, 58, 109 (1996). https://doi.org/10.1016/0378-7753(95)02269-4
  4. Hun Kwan Park, 'Numerical Study on the performance of a planar Solid Oxide Fuel Cell' M. D Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2010).
  5. Jinliang Yuan, Masoud Rokni, and Bengt Suden, 'Threedimensional computational analysis of gas and heat transport phenomena in ducts relevant for anodesupported solid oxide fuel cells', International Journal of Heat and Mass Transfer, 46, 809 (2003). https://doi.org/10.1016/S0017-9310(02)00357-5
  6. C.M. Huang, S.S.Shy, C.W.Chien, and C.H.Lee, 'Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties', Journal of power Sources, 195, 2260 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.048
  7. Chao-Yang Wang, 'Fundamental Models for Fuel Cell Engineering', Chemical Reviews, 104, 4727 (2004). https://doi.org/10.1021/cr020718s
  8. Kun Yuan, Yan Ji, and J.N. Chung, 'Physics-based modeling of a low-temperature solid oxide fuel cell with consideration of microstructure and interfacial effects', Journal of power Sources, 194, 908 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.045
  9. Seong-Soo Pyo .et, 'Recent R&D Trends of Solid Oxide Fuel Cell Power Generation System', Journal of the Korean Electrochemical Society, 12, 119 (2009). https://doi.org/10.5229/JKES.2009.12.2.119
  10. Shixue Liu, Wei Kong, and Zijing Lin, 'Threedimensional modeling of planar solid oxide fuel cells and the rib design optimization' J. power Sources, 194, 854 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.056
  11. Meng Ni, Michael K.H.Leung, and Dennis Y.C.Leung, 'Parametric study of solid oxide fuel cell performance', Energy Conversion and Management, 48, 1525 (2007). https://doi.org/10.1016/j.enconman.2006.11.016
  12. Yuzhang Wang, Fumihiko Yoshiba, Takao Watanabe, and Shilie Wang, 'Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC', Journal of power Sources, 170, 101 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.004
  13. C.M.Huang, S.S.Shy, H.H.Li, and C.H.Lee, 'The impact of flow distributors on the performance of planar solid oxide fuel cell', Journal of power Sources, 195, 6280 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.073
  14. S.S. Shy, C.M. Huang, H.H.Li, and C.H.Lee, 'The impact of flow distributors on the performance of planar solid oxide fuel cell-Part II: Electrochemical impedance measurements', Journal of power Sources, 196, 7555 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.021
  15. Jai-Who Kim, Anil V.Virkar, Kuan-Zong Fung, Karun Mehta, and Subhash C. Sing hal, 'Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells', Journal of The Electrochemical Society, 146, 69 (1999). https://doi.org/10.1149/1.1391566
  16. Kyung Joung Yoon, J.H. Lee, J.W. Son, B.K. Kim, H.J. Jae, and H.W. Lee, 'The solid oxide fuel cell research and development technology trends', Journal of the Korean Ceramic Society, 15, 7 (2012)
  17. FLUENT, inc., 'FLUENT 6.3 User's Guide' (2006)
  18. ANSYS, inc., 'ANSYS Fluent Fuel Cell Modules Manual' (2013)
  19. Shixue Liu, Ce Song, and Zijing Lin, 'The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the design optimization', Journal of power Sources, 183, 214 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.054