DOI QR코드

DOI QR Code

Troubleshooting Arterial-Phase MR Images of Gadoxetate Disodium-Enhanced Liver

  • Huh, Jimi (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine) ;
  • Kim, So Yeon (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine) ;
  • Yeh, Benjamin M. (Department of Radiology and Biomedical Imaging, University of California San Francisco) ;
  • Lee, Seung Soo (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine) ;
  • Kim, Kyoung Won (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine) ;
  • Wu, En-Haw (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine) ;
  • Wang, Z. Jane (Department of Radiology and Biomedical Imaging, University of California San Francisco) ;
  • Zhao, Li-qin (Beijing Friendship Hospital, Capital Medical University) ;
  • Chang, Wei Chou (Tri-Service General Hospital and National Defense Medical Center)
  • 투고 : 2015.03.24
  • 심사 : 2015.07.28
  • 발행 : 2015.11.01

초록

Gadoxetate disodium is a widely used magnetic resonance (MR) contrast agent for liver MR imaging, and it provides both dynamic and hepatobiliary phase images. However, acquiring optimal arterial phase images at liver MR using gadoxetate disodium is more challenging than using conventional extracellular MR contrast agent because of the small volume administered, the gadolinium content of the agent, and the common occurrence of transient severe motion. In this article, we identify the challenges in obtaining high-quality arterial-phase images of gadoxetate disodium-enhanced liver MR imaging and present strategies for optimizing arterial-phase imaging based on the thorough review of recent research in this field.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Kudo M. Will Gd-EOB-MRI change the diagnostic algorithm in hepatocellular carcinoma? Oncology 2010;78 Suppl 1:87-93
  2. Fowler KJ, Brown JJ, Narra VR. Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology 2011;54:2227-2237 https://doi.org/10.1002/hep.24679
  3. Mitchell DG, Bruix J, Sherman M, Sirlin CB. LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions. Hepatology 2015;61:1056-1065 https://doi.org/10.1002/hep.27304
  4. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022 https://doi.org/10.1002/hep.24199
  5. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010;30:52-60 https://doi.org/10.1055/s-0030-1247132
  6. Brismar TB, Dahlstrom N, Edsborg N, Persson A, Smedby O, Albiin N. Liver vessel enhancement by Gd-BOPTA and Gd- EOB-DTPA: a comparison in healthy volunteers. Acta Radiol 2009;50:709-715 https://doi.org/10.1080/02841850903055603
  7. Tamada T, Ito K, Sone T, Yamamoto A, Yoshida K, Kakuba K, et al. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging 2009;29:636-640 https://doi.org/10.1002/jmri.21689
  8. Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PS, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 2013;266:452-461 https://doi.org/10.1148/radiol.12120826
  9. Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol 2010;195:29-41 https://doi.org/10.2214/AJR.10.4538
  10. Ringe KI, Husarik DB, Sirlin CB, Merkle EM. Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. AJR Am J Roentgenol 2010;195:13-28 https://doi.org/10.2214/AJR.10.4392
  11. Tamada T, Ito K, Yoshida K, Kanki A, Higaki A, Tanimoto D, et al. Comparison of three different injection methods for arterial phase of Gd-EOB-DTPA enhanced MR imaging of the liver. Eur J Radiol 2011;80:e284-e288 https://doi.org/10.1016/j.ejrad.2010.07.006
  12. Vogl TJ, Kümmel S, Hammerstingl R, Schellenbeck M, Schumacher G, Balzer T, et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 1996;200:59-67 https://doi.org/10.1148/radiology.200.1.8657946
  13. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005;40:715-724 https://doi.org/10.1097/01.rli.0000184756.66360.d3
  14. Zech CJ, Vos B, Nordell A, Urich M, Blomqvist L, Breuer J, et al. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 2009;44:305-310 https://doi.org/10.1097/RLI.0b013e3181a24512
  15. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010;256:32-61 https://doi.org/10.1148/radiol.10090908
  16. Bae KT. Peak contrast enhancement in CT and MR angiography: when does it occur and why? Pharmacokinetic study in a porcine model. Radiology 2003;227:809-816 https://doi.org/10.1148/radiol.2273020102
  17. Tirkes T, Mehta P, Aisen AM, Lall C, Akisik F. Comparison of Dynamic Phase Enhancement of Hepatocellular Carcinoma Using Gadoxetate Disodium vs Gadobenate Dimeglumine. J Comput Assist Tomogr 2015;39:479-482 https://doi.org/10.1097/RCT.0000000000000234
  18. Kim HJ, Kim BS, Kim MJ, Kim SH, de Campos RO, Hernandes M, et al. Enhancement of the liver and pancreas in the hepatic arterial dominant phase: comparison of hepatocytespecific MRI contrast agents, gadoxetic acid and gadobenate dimeglumine, on 3 and 1.5 Tesla MRI in the same patient. J Magn Reson Imaging 2013;37:903-908 https://doi.org/10.1002/jmri.23874
  19. Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology 2014;272:123-131 https://doi.org/10.1148/radiol.14132269
  20. Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 2014;271:426-434 https://doi.org/10.1148/radiol.13131988
  21. Kim SY, Park SH, Wu EH, Wang ZJ, Hope TA, Chang WC, et al. Transient respiratory motion artifact during arterial phase MRI with gadoxetate disodium: risk factor analyses. AJR Am J Roentgenol 2015;204:1220-1227 https://doi.org/10.2214/AJR.14.13677
  22. Bashir MR, Castelli P, Davenport MS, Larson D, Marin D, Hussain HK, et al. Respiratory motion artifact affecting hepatic arterial phase MR imaging with gadoxetate disodium is more common in patients with a prior episode of arterial phase motion associated with gadoxetate disodium. Radiology 2015;274:141-148 https://doi.org/10.1148/radiol.14140386
  23. Haradome H, Grazioli L, Tsunoo M, Tinti R, Frittoli B, Gambarini S, et al. Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd- EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging 2010;32:334-340 https://doi.org/10.1002/jmri.22241
  24. Chung SH, Kim MJ, Choi JY, Hong HS. Comparison of two different injection rates of gadoxetic acid for arterial phase MRI of the liver. J Magn Reson Imaging 2010;31:365-372 https://doi.org/10.1002/jmri.22057
  25. Schmid-Tannwald C, Herrmann K, Oto A, Panteleon A, Reiser M, Zech C. Optimization of the dynamic, Gd-EOB-DTPA-enhanced MRI of the liver: the effect of the injection rate. Acta Radiol 2012;53:961-965 https://doi.org/10.1258/ar.2012.120186
  26. Kim SM, Heo SH, Kim JW, Lim HS, Shin SS, Jeong YY, et al. Hepatic arterial phase on gadoxetic acid-enhanced liver MR imaging: a randomized comparison of 0.5 mL/s and 1 mL/s injection rates. Korean J Radiol 2014;15:605-612 https://doi.org/10.3348/kjr.2014.15.5.605
  27. Bashir MR, Gupta RT, Davenport MS, Allen BC, Jaffe TA, Ho LM, et al. Hepatocellular carcinoma in a North American population: does hepatobiliary MR imaging with Gd-EOB-DTPA improve sensitivity and confidence for diagnosis? J Magn Reson Imaging 2013;37:398-406 https://doi.org/10.1002/jmri.23818
  28. Motosugi U, Ichikawa T, Sano K, Sou H, Onohara K, Muhi A, et al. Double-dose gadoxetic Acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol 2011;46:141-145 https://doi.org/10.1097/RLI.0b013e3181f9c487
  29. Motosugi U, Ichikawa T, Sou H, Sano K, Ichikawa S, Tominaga L, et al. Dilution method of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). J Magn Reson Imaging 2009;30:849-854 https://doi.org/10.1002/jmri.21913
  30. Park YS, Lee CH, Kim IS, Kiefer B, Woo ST, Kim KA, et al. Usefulness of controlled aliasing in parallel imaging results in higher acceleration in gadoxetic acid-enhanced liver magnetic resonance imaging to clarify the hepatic arterial phase. Invest Radiol 2014;49:183-188 https://doi.org/10.1097/RLI.0000000000000011
  31. Goshima S, Kanematsu M, Kondo H, Watanabe H, Kawada H, Moriyama N, et al. Evaluation of optimal scan delay for gadoxetate disodium-enhanced hepatic arterial phase MRI using MR fluoroscopic triggering and slow injection technique. AJR Am J Roentgenol 2013;201:578-582 https://doi.org/10.2214/AJR.12.10034
  32. Hussain HK, Londy FJ, Francis IR, Nghiem HV, Weadock WJ, Gebremariam A, et al. Hepatic arterial phase MR imaging with automated bolus-detection three-dimensional fast gradientrecalled- echo sequence: comparison with test-bolus method. Radiology 2003;226:558-566 https://doi.org/10.1148/radiol.2262011593
  33. Lee VS, Lavelle MT, Rofsky NM, Laub G, Thomasson DM, Krinsky GA, et al. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breathhold examination: feasibility, reproducibility, and technical quality. Radiology 2000;215:365-372 https://doi.org/10.1148/radiology.215.2.r00ma16365
  34. Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology 1999;212:876-884 https://doi.org/10.1148/radiology.212.3.r99se34876
  35. Guglielmo FF, Mitchell DG, Gupta S. Gadolinium contrast agent selection and optimal use for body MR imaging. Radiol Clin North Am 2014;52:637-656 https://doi.org/10.1016/j.rcl.2014.02.004
  36. McKenzie CA, Lim D, Ransil BJ, Morrin M, Pedrosa I, Yeh EN, et al. Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 2004;230:589-594 https://doi.org/10.1148/radiol.2302021230
  37. Vogt FM, Antoch G, Hunold P, Maderwald S, Ladd ME, Debatin JF, et al. Parallel acquisition techniques for accelerated volumetric interpolated breath-hold examination magnetic resonance imaging of the upper abdomen: assessment of image quality and lesion conspicuity. J Magn Reson Imaging 2005;21:376-382 https://doi.org/10.1002/jmri.20288
  38. Kim KW, Lee JM, Jeon YS, Kang SE, Baek JH, Han JK, et al. Free-breathing dynamic contrast-enhanced MRI of the abdomen and chest using a radial gradient echo sequence with K-space weighted image contrast (KWIC). Eur Radiol 2013;23:1352-1360 https://doi.org/10.1007/s00330-012-2699-4
  39. Fujinaga Y, Ohya A, Tokoro H, Yamada A, Ueda K, Ueda H, et al. Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase. Eur Radiol 2014;24:1290-1299 https://doi.org/10.1007/s00330-014-3122-0
  40. Budjan J, Ong M, Riffel P, Morelli JN, Michaely HJ, Schoenberg SO, et al. CAIPIRINHA-Dixon-TWIST (CDT)-volumeinterpolated breath-hold examination (VIBE) for dynamic liver imaging: comparison of gadoterate meglumine, gadobutrol and gadoxetic acid. Eur J Radiol 2014;83:2007-2012 https://doi.org/10.1016/j.ejrad.2014.08.003
  41. Soher BJ, Dale BM, Merkle EM. A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am 2007;15:277-290, v https://doi.org/10.1016/j.mric.2007.06.002
  42. Boll DT, Merkle EM. Imaging at higher magnetic fields: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 2010;18:549-564, xi-xii https://doi.org/10.1016/j.mric.2010.08.008
  43. Tanimoto A, Higuchi N, Ueno A. Reduction of ringing artifacts in the arterial phase of gadoxetic acid-enhanced dynamic MR imaging. Magn Reson Med Sci 2012;11:91-97 https://doi.org/10.2463/mrms.11.91
  44. Secil M, Obuz F, Altay C, Gencel O, Igci E, Sagol O, et al. The role of dynamic subtraction MRI in detection of hepatocellular carcinoma. Diagn Interv Radiol 2008;14:200-204
  45. Yu JS, Kim YH, Rofsky NM. Dynamic subtraction magnetic resonance imaging of cirrhotic liver: assessment of high signal intensity lesions on nonenhanced T1-weighted images. J Comput Assist Tomogr 2005;29:51-58 https://doi.org/10.1097/01.rct.0000152846.06095.b3
  46. An C, Park MS, Kim D, Kim YE, Chung WS, Rhee H, et al. Added value of subtraction imaging in detecting arterial enhancement in small (<3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol 2013;23:924-930 https://doi.org/10.1007/s00330-012-2685-x

피인용 문헌

  1. Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Compa vol.17, pp.4, 2015, https://doi.org/10.3348/kjr.2016.17.4.522
  2. Quantitative Measurement of Hepatic Fibrosis with Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Patients with Chronic Hepatitis B Infection: A Comparative Study on Aspartate Aminotransferase t vol.18, pp.3, 2017, https://doi.org/10.3348/kjr.2017.18.3.444
  3. Preoperative Radiologic Evaluation of Cholangiocarcinoma vol.69, pp.3, 2015, https://doi.org/10.4166/kjg.2017.69.3.159
  4. Application of High-Speed T1 Sequences for High-Quality Hepatic Arterial Phase Magnetic Resonance Imaging: Intraindividual Comparison of Single and Multiple Arterial Phases vol.52, pp.10, 2015, https://doi.org/10.1097/rli.0000000000000378
  5. Evaluation of transient respiratory motion artifact at gadoxetate disodium-enhanced MRI—Influence of different contrast agent application protocols vol.13, pp.7, 2018, https://doi.org/10.1371/journal.pone.0200887
  6. MRI in donor candidates for living donor liver transplant: Technical and practical considerations vol.48, pp.6, 2018, https://doi.org/10.1002/jmri.26257
  7. Pitfalls in liver MRI: Technical approach to avoiding misdiagnosis and improving image quality vol.49, pp.1, 2019, https://doi.org/10.1002/jmri.26343
  8. Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver vol.23, pp.1, 2015, https://doi.org/10.13104/imri.2019.23.1.1
  9. Second shot arterial phase to overcome degraded hepatic arterial phase in liver MR imaging vol.29, pp.6, 2015, https://doi.org/10.1007/s00330-018-5897-x
  10. Gadoxetic acid-enhanced magnetic resonance imaging can predict the pathologic stage of solitary hepatocellular carcinoma vol.25, pp.21, 2019, https://doi.org/10.3748/wjg.v25.i21.2636
  11. Intravenous gadolinium-based hepatocyte-specific contrast agents (HSCAs) for contrast-enhanced liver magnetic resonance imaging in pediatric patients: what the radiologist should know vol.49, pp.10, 2019, https://doi.org/10.1007/s00247-019-04476-4
  12. MR Imaging of the Perihepatic Space vol.21, pp.None, 2020, https://doi.org/10.3348/kjr.2019.0774
  13. Imaging Modalities for Hepatocellular Carcinoma Surveillance: Expanding Horizons beyond Ultrasound vol.20, pp.2, 2020, https://doi.org/10.17998/jlc.20.2.99
  14. Accurate Assessment of Vascularity of Focal Hepatic Lesions in Arterial Phase Imaging vol.297, pp.3, 2015, https://doi.org/10.1148/radiol.2020202780
  15. Transient Severe Motion Artifact on Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging : A Systematic Review and Meta-analysis vol.57, pp.1, 2015, https://doi.org/10.1097/rli.0000000000000806