DOI QR코드

DOI QR Code

Characterization of a non-specific Lipid Transfer Protein (ns-LTP) promoter from poplar (Populus alba × P. glandulosa)

현사시나무(Populus alba × P. glandulosa)에서 분리한 non-specific Lipid Transfer Protein (ns-LTP) 프로모터의 특성 분석

  • Cho, Jin-Seong (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Noh, Seol Ah (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Choi, Young-Im (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 조진성 (국립산림과학원 산림유전자원부) ;
  • 노설아 (국립산림과학원 산림유전자원부) ;
  • 최영임 (국립산림과학원 산림유전자원부)
  • Received : 2015.11.03
  • Accepted : 2015.12.17
  • Published : 2015.12.31

Abstract

In order to study genetic engineering in trees, the characterization of genes and promoters from trees is necessary. We isolated the promoter region (867 bp) of Pagns-LTP from poplar (P. alba ${\times}$ P. glandulosa) and characterized its activity in transgenic poplar plants using a ${\beta}$-glucuronidase (GUS) reporter gene. High-level expression of the Pagns-LTP transcript was found in poplar roots, while comparatively low-level expression was found in the young leaves. Pagns-LTP mRNA was not detected in other poplar tissues. Additionally, transgenic poplar plants that contained a Pagns-LTP promoter fused to a GUS reporter gene, displayed tissue-specific GUS enzyme activity localized in root tissue. In silico analysis of the Pagns-LTP promoter sequence reveals the presence of several cis-regulatory elements responsive to phytohormones, biotic and abiotic stresses, as well as those regulating tissue-specific expression. These results demonstrate that the Pagns-LTP promoter has tissue-specific expression activity in poplar roots and leaves that may be involved in organ development and plant resistance to various stresses. Therefore, we anticipate that the Pagns-LTP promoter would be a useful tool to genetically optimize woody plants for functional genomics.

나무의 유전 공학적 연구를 위해서는 목본 고유의 유전자 및 프로모터 연구가 필수적이다. 우리는 포플러(P. alba ${\times}$ P. glandulosa)의 Pagns-LTP 유전자의 867 bp 프로모터를 분리하였고, ${\beta}$-glucuronidase (GUS) reporter 유전자를 이용한 프로모터의 형질전환 포플러를 제작하여 특성 분석하였다. Pagns-LTP 유전자는 어린뿌리에서 강하게 발현되었고 어린잎에서는 약하게 발현되었으며, 그밖에 다른 조직에서는 발현되지 않았다. 또한, 프로모터의 활성은 뿌리와 어린잎에서 한정되었으며 어린뿌리의 세포 전체에서 강한 활성을 나타내었다. 이에 포플러 ns-LTP 프로모터 내의 cis-element를 조사하고 현사시나무에서 Pagns-LTP 프로모터를 분리한 후 활성을 분석하였다. 프로모터 내의 cis-element를 분석한 결과, 조직 특이적 발현과 호르몬 및 스트레스에 반응하는 다양한 cis-element가 존재함을 확인하였다. 이를 통해 포플러의 ns-LTP는 생장뿐만 아니라, 스트레스에도 관여할 것이라고 추측할 수 있었다. 본 연구는 목본의 유전자 기능 분석 및 다양한 응용 연구를 위해 유용하게 이용될 수 있는 도구로서의 가능성을 제시하였다.

Keywords

References

  1. Baumann K, De Paolis A, Costantino P, Gualberti G (1999) The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell Online. 11:323-333 https://doi.org/10.1105/tpc.11.3.323
  2. Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol. 116:1515-1526 https://doi.org/10.1104/pp.116.4.1515
  3. Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics. 9:86 https://doi.org/10.1186/1471-2164-9-86
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140:176-183
  6. Choi DW, Song JY, Oh MH, Lee JS, Moon JH, Suh SW, Kim SG (1996) Isolation of a root-specific cDNA encoding a ns-LTP-like protein from the roots of bean (Phaseolus vulgaris L.) seedlings. Plant Mol Biol. 30:1059-1066 https://doi.org/10.1007/BF00020816
  7. Choi YI, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2005) An efficient and novel plant-selectable marker based on organomercurial resistance. Plant Biol. 48:351-355 https://doi.org/10.1007/BF03030576
  8. DeBono A, Yeats TH, Rose JK, Bird D, Jetter R, Kunst L, Samuels L (2009) Arabidopsis LTPG is a glycosylphosphatidylinositolanchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell. 21:1230-1238 https://doi.org/10.1105/tpc.108.064451
  9. Edqvist J, Farbos I (2002) Characterization of germination-specific lipid transfer proteins from Euphoribia lagascae. Plant. 215:41-50 https://doi.org/10.1007/s00425-001-0717-x
  10. Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue- and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Molecular Biology. 27:651-667 https://doi.org/10.1007/BF00020220
  11. Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Genet Genomics. 163:181-187 https://doi.org/10.1007/BF00267408
  12. Jiao Y, Ma L, Strickland E, Deng XW (2005) Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis. Plant Cell. 17:3239-3256 https://doi.org/10.1105/tpc.105.035840
  13. Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transfer proteins in the poaceae family. Mol Cells. 24:215-223
  14. Ko JH, Kim HT, Hwang ID, Han KH (2012) Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. Plant Biotech J. 10:587-596 https://doi.org/10.1111/j.1467-7652.2012.00690.x
  15. Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol. 183:499-502 https://doi.org/10.1016/0022-2836(85)90017-8
  16. Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prange T (2008) The structure of 'defective in induced resistance' protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Prot Sci. 17:1522-1530 https://doi.org/10.1110/ps.035972.108
  17. Lee JY, Min K, Cha H, Shin DH, Hwang KY, Suh SW (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol. 276:437-448 https://doi.org/10.1006/jmbi.1997.1550
  18. Lee SB, Go YS, Bae HJ, Park JH, Cho SH, Cho HJ, Lee DS, Park OK, Hwang I, Suh MC (2009) Disruption of glycosylphosphatidylinositon-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules and enhanced susceptibiliy to infection by the fungal pathogen, Alternaria brassicicola. Plant physiol. 150:42-54 https://doi.org/10.1104/pp.109.137745
  19. Liu J, Rowe J, Lindsey K (2014) Hormonal crosstalk for root development : a combined expreimental and modeling perspective. Front Plant Sci. 5:116
  20. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399-403 https://doi.org/10.1038/nature00962
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bkoassay with tabacco cultures. Physiol Plantarum. 15(3):473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Nieuwland J, Feron R, Huisman BA, Fasolino A, Hibers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell. 17:2009-2019 https://doi.org/10.1105/tpc.105.032094
  23. Nonogaki H (2014) Seed dormancy and germination-emerging mechanisms and new hypotheses. Front Plant Sci. 5:233
  24. Pfaffl MW (2001) Development and validation of an externally standardised quantitative Insulin like growth factor-1 (IGF-1) RT-PCR using LightCyclear SYBR Green I technology. In: Meuer S, Witter C, Nakagawara K (eds), Rapid Cycle Real-time PCR, Methods and Applications. Springer Press, Heidelberg. 281-191
  25. Pii Y, Astegno A, Peroni E, Zaccardelli M, Pandolfini T, Crimi M (2009) The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant Microbe Interact. 329:223-226
  26. Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24:703-711 https://doi.org/10.1046/j.1365-313x.2000.00909.x
  27. Seo SK, Kang SW, Kim W, Hong JS, Kim MJ, Lee KP, Kim SH (2000) Mechanisms in Plant Development. WORLDSCIENCE, pp.7-8
  28. Shin DH, Lee JY, Hwang KY, Kim KK, Suh SW (1995) Highresolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure. 3:189-199 https://doi.org/10.1016/S0969-2126(01)00149-6
  29. Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot. 65:2633-2643 https://doi.org/10.1093/jxb/ert485
  30. Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cees of root nodules and in the arbusculecontaining cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe interact. 17:62-69 https://doi.org/10.1094/MPMI.2004.17.1.62
  31. Wang L, Li L, Xu L, Zhou J, Zhuang H, Gong X, Wang M, Sun SSM, Zhuge Q (2013) Isolation and Functional Analysis of the Poplar RbcS Gene Promoter. Plant Mol Biol Rep. 31:120-127 https://doi.org/10.1007/s11105-012-0482-y
  32. Werner T, Schmulling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol. 12:527-538 https://doi.org/10.1016/j.pbi.2009.07.002
  33. Zhang ZL, Xie Z, Zou X, Casaretto J, Ho T-hD, Shen QJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134:1500-1513 https://doi.org/10.1104/pp.103.034967