DOI QR코드

DOI QR Code

Current status and prospects of blueberry genomics research

블루베리 유전체 연구현황 및 전망

  • Kim, Jin Gook (Dept. of Horticulture, Gyeongsang National University, Insti. of Agric. & Life Sci., Gyeongsang National University) ;
  • Yun, Hae Keun (Department of Horticulture & Life science, Yeungnam University)
  • 김진국 (경상대학교 원예학과, 경상대학교 농업생명과학연구원) ;
  • 윤해근 (영남대학교 원예생명과학과)
  • Received : 2015.12.16
  • Accepted : 2015.12.29
  • Published : 2015.12.31

Abstract

Blueberry (Vaccinium spp.) is a bush that grows well at special cultural environments such as acid soil, high organic matter content, and a good drainage and aeration compared to other general crops. Blueberries are well known to contain high amounts of anthocyanins and phenolic compounds, resulting in high antioxidant activity that provides health benefits, and expanding the cultivation areas and consumer's demand in the worldwide. However, the full genome of blueberry has not been announced until now. Furthermore, the genomic analysis and transcriptome approaches are not so popular compare to major crops such as orange, apple, and grape. The aim of the review about blueberry genomic research is to establish the platform for setting blueberry breeding target, increasing proficiency of blueberry research, and making the practical cultivation techniques in Korea. The main topics in the blueberry genomic research including transcriptome, genetic mapping, and various markers are related with cold hardiness, chilling requirement, hot tolerance, anthocyanin content, and flavonoid synthesis pathway on various tissues like flower bud, leaf bud, shoot, root, and berry fruit. The review of the current status of blueberry genomic research will provide basic information to the breeders and researchers and will contribute to development of blueberry industry with sustainable productions and increase of blueberry consumption as new profitable crops in Korea.

블루베리는 유기물 함량이 높고 통기성과 배수성이 양호한 산성토양에서 생육이 우수한 관목식물이다. 블루베리 과실은 안토시아닌 함량이 높고 항산화 활성이 우수한 기능성 과실로서 소비자 수요가 급증하고 있으며 전 세계적으로 재배면적이 급속하게 증가하고 있다. 그러나 아직까지 블루베리 전체 유전체에 대한 해독이 이루어지지 않았으며, 타 작목에 비하여 유전체 연구가 많이 이루어지지 않고 있다. 본 총설의 목적은 블루베리 유전체 연구현황 분석을 통하여 국내 블루베리 유전체 연구에 대한 목표 설정, 효율성 증진, 실용화 방안에 대한 플랫폼을 구축하는데 있다. 지금까지의 블루베리 유전체, 전사체, 마커에 대한 연구는 블루베리의 내한성, 저온요구도, 환경적인 스트레스 요인에 대한 이해 증진과 재배 적응성을 높이기 위한 식물학적 이해와 우량 계통 및 품종 선발에 대한 육종 효율성을 높이기 위한 목표로 연구가 수행되었다. 본 총설에서 살펴본 블루베리 유전체 연구에 대한 현황분석은 국내의 유전체 연구자 및 블루베리 연구자들에게 국내환경에서 보다 재배적응성이 우수하고 지속적이며 고기능성의 과실생산을 위한 품종 육성과 재배기술 연구에 대한 기초자료를 제공할 것이며 국내에서 신소득 과수로서 블루베리가 정착하고 발전하는데 크게 기여할 것으로 생각된다.

Keywords

References

  1. Albert V, Soltis D, Carlson J, Farmerie W, Wall PK (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5:5 https://doi.org/10.1186/1471-2229-5-5
  2. Arus P, Verde I, Sosinski B, Zhebentyayeva T, Abbott A (2012) The peach genome. Tree Genetics Genomes 8:531-547 https://doi.org/10.1007/s11295-012-0493-8
  3. Bian Y, Ballington J, Raja A, Brouwer C, Reid R, Burke M, Wang X, Rowland, LJ, Bassil N, Brown A (2014) Patterns of simple sequence repeats in cultivated blueberries (Vaccinium section Cyanococcus spp.) and their use in revealing genetic diversity and population structure. Mol Breeding 34:675-689 https://doi.org/10.1007/s11032-014-0066-7
  4. Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657-660 https://doi.org/10.1111/j.1471-8286.2005.01025.x
  5. Boches P, Bassil NV, Rowland LJ (2006) Genetic diversity in the highbush blueberry Vaccinium corymbosum L. evaluated with microsatellite markers. J Amer Soc Horti Sci 131:674-686
  6. Chen L, Liu Y, Liu H, Kang L, Geng J, Gai Y, Ding Y, Sun H, Li Y (2015) Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PloS ONE 10(3):e0118578 https://doi.org/10.1371/journal.pone.0118578
  7. Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. Theor Appl Genetics 86:1001-1006
  8. Debnath SC (2014) Structured diversity using EST-PCR and EST-SSR markers in a set of wild blueberry clones and cultivars. Bioche System Ecol 54:337-347 https://doi.org/10.1016/j.bse.2014.03.018
  9. Debnath SC, Siow YL, Petkau J, An D, Bykova NV (2012) Molecular markers and antioxidant activity in berry crops: Genetic diversity analysis. Canadian J Plant Sci 92:1121-1133 https://doi.org/10.4141/cjps2011-240
  10. Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863-872 https://doi.org/10.1016/j.plantsci.2003.11.013
  11. Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha LB, Matthews BF, Wei H, Arora R, Rowland LJ (2006) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735-751
  12. Die JV, Rowland LJ (2013) Advent of genomics in blueberry. Mol Breeding 32:493-504 https://doi.org/10.1007/s11032-013-9893-1
  13. Die JV, Rowland LJ (2014) Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environ Exper Bot 106:87-98 https://doi.org/10.1016/j.envexpbot.2013.12.017
  14. Graham J, Jennings N (2009) Raspberry breeding, p. 233-248. In: SM Jain, PM Priyadarshan (Eds.). Breeding plantation tree crops: temperate species. Springer, New York, USA
  15. Gupta V, Estrada A D, Blakley I, Reid R, Patel K, Meyer MD, Anderson SU, Brown A, Lila MA, Loraine AE (2015) RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience 4:5 https://doi.org/10.1186/s13742-015-0046-9
  16. Jaillon O, Aury J-M, Noel B (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467 https://doi.org/10.1038/nature06148
  17. Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, Wang N, Li H, Li Y (2012) De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511:54-61 https://doi.org/10.1016/j.gene.2012.09.021
  18. Liu YC, Liu S, Liu DC, Wei YX, Liu C, Yang YM, Tao CG, Liu WS. (2014) Exploiting EST databases for the development and characterization of EST-SSR markers in blueberry (Vaccinium) and their cross-species transferability in Vaccinium spp. Sci Hort 176:319-329 https://doi.org/10.1016/j.scienta.2014.07.026
  19. Lobos GA, Hancock JF (2015) Breeding blueberries for a changing global environment: a review. Front Plant Sci 6:782
  20. Mudd AB, White EJ, Bolloskis MP, Kapur NP, Everhart KW, Lin Y-C, Brown RH (2013) Students' perspective on genomics: from sample to sequence using the case study of blueberry. Front Genet 4:245
  21. Qu L, Hancock JF (1997) RAPD-based genetic linkage map of blueberry derived from an interspecific cross between diploid Vaccinium darrowii and tetraploid V. corymbosum. J Amer Soc Horti Sci 122:69-73
  22. Retamales JB, Hancock JF (2012) Blueberries. CABI Publishing, Wallingford, UK
  23. Rowland L, Alkharouf N, Darwish O, Ogden E, Polashock J, Bassil N, Main D (2012a) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46 https://doi.org/10.1186/1471-2229-12-46
  24. Rowland LJ, Alkharouf N, Bassil N, Beers L, Bell DJ, Buck EJ, Drummond FA, Finn CE, Graham J, Hancock JF, McCallum SM, Olmstead JW (2012b) Generating genomic tools for blueberry improvement. Int J Fruit Sci 12:276-287 https://doi.org/10.1080/15538362.2011.619452
  25. Rowland LJ, Ogden EL, Ehlenfeldt MK (2010) EST-PCR markers developed for highbush blueberry are also useful for genetic fingerprinting and relationship studies in rabbiteye blueberry. Sci Hort 125:779-784 https://doi.org/10.1016/j.scienta.2010.05.008
  26. Rowland LJ, Levi A (1994) RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowii and V elliottii). Theor Appl Genetics 87:863-868
  27. Rowland LJ, Dhanaraj AL, Naik D, Alkharouf N, Matthews B, Arora R (2008) Study of cold tolerance in blueberry using EST libraries, cDNA microarrays and subtractive hybridization. HortScience 43:1975-1981
  28. Rowland LJ, Hancock JF, Bassil NV (2011) Blueberry, p. 1-40. In: KM Folta, C Kole (Eds.). Genetics, Genomics and Breeding of Berries. Science Publishers, Enfield, NH, USA
  29. Rowland LJ, Mehra S, Dhanaraj A, Ogden EL, Arora R. (2003a) Identification of molecular markers associated with cold tolerance in blueberry. Acta Hortic 625:59-69
  30. Rowland LJ, Ogden EL, Bassil N, Buck EJ, McCallum S, Graham J (2014) Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol Breed. 34:2033-2048 https://doi.org/10.1007/s11032-014-0161-9
  31. Rowland LJ, Smriti M, Dhanaraj A, Ehlenfeldt M, Ogden E, Slovin J (2003b) Development of EST-PCR markers for DNA fingerprinting and mapping in blueberry (Vaccinium, Section Cyanococcus). J Amer Soc Horti Sci 128:682-690
  32. Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags from cold-acclimated and nonacclimated leaves of Rhododendron catawbiense Michx. Planta 221:406-416 https://doi.org/10.1007/s00425-004-1440-1
  33. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51:675-683 https://doi.org/10.1002/mnfr.200700002
  34. Zifkin M, Jin A, Ozga JA, Zaharia LI, Schernthaner JP, Gesell A, Abrams SR, Kennedy JA, Constabel CP (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200-224 https://doi.org/10.1104/pp.111.180950

Cited by

  1. Physicochemical Properties and Antioxidant Activities of Black Raspberry, Black Chokeberry, Mulberry, and Blueberry during Lactic Acid Fermentation vol.33, pp.5, 2017, https://doi.org/10.9724/kfcs.2017.33.5.479