DOI QR코드

DOI QR Code

Current status and prospects of genomics and bioinformatics in grapes

포도 유전체 연구현황 및 전망

  • Hur, Youn Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jung, Sung Min (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yun, Hae Keun (Department of Horticulture and Life Science, Yeungnam University)
  • 허윤영 (국립원예특작과학원 과수과) ;
  • 정성민 (국립원예특작과학원 과수과) ;
  • 윤해근 (영남대학교 원예생명과학과)
  • Received : 2015.12.16
  • Accepted : 2015.12.25
  • Published : 2015.12.31

Abstract

Grape is one of the important fruit crops around the world, and exposed to disease and pests, and internal or environmental stresses in the vineyards. Breeding and cultivation of new varieties of high quality-grapes resistant to diseases and pests and tolerant to stresses are the most important steps in the grape production. However, conventional breeding has laborious and time-consuming procedures in maintaining and selecting seedlings in the fields. Development of molecular breeding technology through understanding of molecular mechanism of useful traits can be used as an alternative strategy to improve the efficiency of grape breeding program by cross hybridization in grape development programs. The completion of the grape genome sequencing project provided the way to discover the novel genes and to analyze their functions. Comparative genomics, transcriptomic analysis, and the genome-wide identification and analysis of useful genes as well as development of molecular marker for valuable traits could provide novel insights into fruit quality and the responses to diseases and stresses, and can be used as important information in molecular breeding programs for grape development.

포도는 전 세계적으로 가장 많이 재배되는 과수 작물 중의 하나로서 재배과정에서 많은 병해충이나 기상재해와 같은 스트레스에 직면한다. 과실의 고품질과 더불어 병충해 저항성인 품종 또는 내재해성 품종을 육성하는 것은 포도 생산에서 매우 중요한 과정이다. 고전적인 교배 육종을 이용한 신품종의 개발은 포장을 관리하는 데에 많은 노동력과 비용이 요구되며 오랜 시간이 소요되는 단점이 있다. 유용형질을 지닌 새로운 품종의 개발에 이용할 분자육종기술은 포도 육종프로램에서 전통적인 교배육종효율을 증진시킬 수 있는 매우 유용한 기술로 여겨진다. 포도의 유전체 해독을 완성함으로써 신품종육성에 활용될 유용유전자를 대량으로 발굴할 수 있고, 기능을 분석하는데 큰 도움을 주고 있다. 포도의 비교유전체, 전사체, 후성유전체, 유전체에 근거한 유전자 발굴, 분자마커 개발 등의 연구는 과실의 품질, 병해와 스트레스에 대한 저항성 기작을 구명하는데 중요한 단서를 제공하고 포도 육종에 유용하게 활용될 것이다.

Keywords

References

  1. Adam-Blondon AF, Lahogue-Esnault F, Bouquet A, Boursiquot JM, This P (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40:147-155
  2. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017-1027 https://doi.org/10.1007/s00122-004-1704-y
  3. Ahn SY, Kim SA, Jo SH, Yun HK (2014) De novo transcriptome analysis of Vitis flexuosa grapevine inoculated with Elsinoe ampelina. Plant Genet Resour-Charact Util 12: S130-S133 https://doi.org/10.1017/S1479262114000410
  4. Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis$\times$labruscana grapes. Theor Appl Genet 122:1427-1438 https://doi.org/10.1007/s00122-011-1542-7
  5. Barba P, Cadle-Davidson L, Galarneau E, Reisch B (2015) Vitis rupestris B38 confers isolate-specific quantitative resistance to penetration by Erysiphe nector. Phytopathology 105:1097-1103 https://doi.org/10.1094/PHYTO-09-14-0260-R
  6. Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73-84 https://doi.org/10.1007/s00122-013-2202-x
  7. Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246-7255 https://doi.org/10.1128/AEM.01047-06
  8. Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet. 120:163-76 https://doi.org/10.1007/s00122-009-1167-2
  9. Berli F, D'Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56:2892-2898 https://doi.org/10.1021/jf073421+
  10. Berli F, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro B, Bottini R (2009) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1-10
  11. Bert PF, Bordenave L, Donnart M, Hevin C, Ollat N, Decroocq S (2013) Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet 126:451-473 https://doi.org/10.1007/s00122-012-1993-5
  12. Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663-1675 https://doi.org/10.1007/s00122-012-1942-3
  13. Bornman JF, Reuber S, Cen YP, Weissenbock G (1997) Ultraviolet radiation as a stress factor and the role of protective pigments, p. 157-168. In : PJ Lumsden (Ed.). Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge
  14. Bouquet A (1983) Contribution a l'etude de l'espece Muscadinia rotundifolia (Michx) Small et de ses hybrides avec Vitis vinifera L. Applications en selection. These Doct, Universite Bordeaux II, France
  15. Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis 35:35-42
  16. Bouquet A. 1986. Introduction dans l'spece Vitis vinifera :L. d'un caracterebde resistance a l'oidium (Uncinula necator Schw. Burr.) issu de l'espece Muscadinia rotundifoloia (Michx) Small. Vignevini 13. Suppl 12:141-146
  17. Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1-10 https://doi.org/10.1034/j.1399-3054.2003.1170101.x
  18. Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572-7585 https://doi.org/10.1139/g06-122
  19. Caprio JM, Quamme HA. 2002. Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can J Plant Sci 82:755-763 https://doi.org/10.4141/P01-160
  20. Chaves MM, Santos TP, Souza CR, Ortuno MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150:237-252 https://doi.org/10.1111/j.1744-7348.2006.00123.x
  21. Chen J, Wang N, Fang L-C, Liang Z-C, Li S-H, Wu B-H (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28 https://doi.org/10.1186/s12870-015-0428-2
  22. Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovacs L, Morgante M, Testolin R, Gaspero GD (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC genetics 10:89
  23. Coombe, B.G., McCarthy, M.G. (2000) Dynamics of grape berry growth and physiology of ripening. Austr J Grape Wine Res 6:131-135 https://doi.org/10.1111/j.1755-0238.2000.tb00171.x
  24. Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Austr J Grape Wine Res 16:86-93 https://doi.org/10.1111/j.1755-0238.2009.00058.x
  25. Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, et al. (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111-134 https://doi.org/10.1007/s10142-006-0039-y
  26. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163 https://doi.org/10.1186/1471-2229-11-163
  27. Crane O, Halaly T, Pang X, Lavee S, Perl A, Vankova R, Or E. (2012) Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. 235:181-192 https://doi.org/10.1007/s00425-011-1497-6
  28. Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83-89
  29. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429 https://doi.org/10.1186/1471-2164-8-429
  30. Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers from R-gene candidates. Theor Appl Genet 114:1249-1263 https://doi.org/10.1007/s00122-007-0516-2
  31. Doligez A, Bouquet a, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780-795 https://doi.org/10.1007/s00122-002-0951-z
  32. Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breeding 33:235-241 https://doi.org/10.1007/s11032-013-9929-6
  33. Emmanuelli F, Lorenzi S, Grzeskowiak , Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J, Zyprian E, Moreira F, Grando M (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39 https://doi.org/10.1186/1471-2229-13-39
  34. Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2007) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7:95-110 https://doi.org/10.1007/s10142-006-0031-6
  35. FAOSTAT (2014) Food and agricultural commodities production. http://faostat.fao.org
  36. Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661-674 https://doi.org/10.1111/tpj.12327
  37. Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J Exp Bot 59:3371-3381 https://doi.org/10.1093/jxb/ern187
  38. Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149 https://doi.org/10.1186/1471-2229-11-149
  39. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420-1428 https://doi.org/10.1104/pp.103.030049
  40. Fuller MP, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Annu Appl Biol 135:589-595 https://doi.org/10.1111/j.1744-7348.1999.tb00891.x
  41. Gao M, Niu J, Zhao S, Jiao C, Xu W, Fei Z, Wang X (2012) Characterization of Erysiphe nector-responsive genes in Chinese wild Vitis quinquangularis. Intl J Mol Sci 13:11497-11519 https://doi.org/10.3390/ijms130911497
  42. Genova AD, Almeida AM, Munoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7 https://doi.org/10.1186/1471-2229-14-7
  43. Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy J, Davies C, Boss P, Delrot S (2011) Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 11:165 https://doi.org/10.1186/1471-2229-11-165
  44. He N, Yaolan F, Shurong L (1990) Grape breeding for cold resistance in northeast China for 30 years. Proc. of 5th International Symposium on grape breeding. Vitis special issue pp. 329
  45. Hemstad, P.R. and J.J. Luby (2000) Utilization of Vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487-490
  46. Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427-438 https://doi.org/10.1007/s00122-007-0680-4
  47. Howell GS (2001) Sustainable grape productivity and the growth-yield relationship: A review. Am J Enol Vitic 52:165-174
  48. Hur YY, Choi YJ, Kim EJ, Yoon MS, Park YS, Jung SM, Noh JH, Park SJ, Ma KH, Park KS (2012) Analysis of genetic relationship of grape rootstock cultivars and wild Vitis species using RAPD and SSR markers. Kor J Breed Sci 44:19-28
  49. Hur YY, Choi YJ, Roh JH, Kim SH, Shin YU, Lee HC, Lee HJ (2010) Changes of leaf water potential and CO2 assimilation in Korean native Vitis flexuosa during drought and subsequent recovery. Proc. of 28th International Horticultural Congress. Abstract II p.724
  50. Hur YY, Jung CJ, Noh JH, Jung SM, Nam JC, Ma KH, Park KS (2014) Analysis of genetic relationship of seedless germplasm and validation assay of the P3_VvAGL11 marker linked to seedlessness in grapevines. Kor J Breed Sci 46:28-36 https://doi.org/10.9787/KJBS.2014.46.1.028
  51. Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotypingby-sequencing markers: a case study in grapevine. PLoS ONE 10(8):e0134880 https://doi.org/10.1371/journal.pone.0134880
  52. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467 https://doi.org/10.1038/nature06148
  53. Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131-135 https://doi.org/10.1016/S1360-1385(98)01215-1
  54. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407-431 https://doi.org/10.1146/annurev.arplant.59.032607.092953
  55. Jung CJ, Hur YY, Noh JH, Park KS, Lee HJ (2014) Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS ONE 9(4):e95634 https://doi.org/10.1371/journal.pone.0095634
  56. Kim ES, Chang EH, Hur YY, Kim TW, Jung SM (2015a) Anthocyanin contents and composition of VlmybA1-2 and VlmybA2 genes in Vitis labrusca hybrid grape cultivars and cross seedlings. Plant Omics J 8:472-478
  57. Kim GH, Yun HK, Choi CS, Park JH, Jung YJ, Park KS, Dane F, Kang KK (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breeding 127:418-423 https://doi.org/10.1111/j.1439-0523.2008.01488.x
  58. Kim SA, Ahn SY, Han JH, Kim SH, Noh JH, Yun HK (2013) Differential expression screening of defense related genes in dormant buds of cold-treated grapevines. Plant Breed Biotech 1:14-23 https://doi.org/10.9787/PBB.2013.1.1.014
  59. Kim SA, Ahn SY, Han HH, Son IC, Yun HK (2015b) Expression of genes affecting skin coloration and sugar accumulation in grape berries at ripening stages under high temperatures. Adv Environ Res 87:25-31
  60. Kim SA, Ahn SY, Yun HK (2016) Transcription analysis of grapevines exposed to low temperature. Hort Environ Biotechnol (accepted)
  61. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon induced mutations in grape skin color. Science 304:982 https://doi.org/10.1126/science.1095011
  62. Kriedemann PE (1986) Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis 7:213-220
  63. Lahogue F, This P, Bouquet A (1998) Identification of a codominant SCAR marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950-959 https://doi.org/10.1007/s001220050976
  64. Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174 https://doi.org/10.1186/1471-2229-12-174
  65. Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786-794 https://doi.org/10.1139/g95-100
  66. Luby JJ, Mansfield AK, Hemstad PR, Beam BA (2003) Development and evaluation of cold hardy wine grape breeding selections and cultivars in the upper Midwest. AVERN Report
  67. Luo F, Zhang F (1990) Grape breeding in China. Proc. 5th International Symposium on grape breeding. pp. 212-216
  68. Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ (2011) Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS ONE 6:e23033 https://doi.org/10.1371/journal.pone.0023033
  69. Ma YY, Zhang YL, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agro Crop Sci 196:212-219
  70. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139-158 https://doi.org/10.1016/j.abb.2005.10.018
  71. Mandl K, Santiago JL, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling $\times$ Sirius for the identification of magnesium deficiency by QTL analysis. Euphytica 149:133-144 https://doi.org/10.1007/s10681-005-9061-8
  72. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Gent 24:133-141 https://doi.org/10.1016/j.tig.2007.12.007
  73. Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81-96 https://doi.org/10.1007/s10142-008-0090-y
  74. Matus JT, Mason CE, Mane SM, Stephens M, Gilad Y (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83 https://doi.org/10.1186/1471-2229-8-83
  75. Mejia N, Gebauer M, Munoz L, Hewstone N, Munoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless table grape progeny. Am J Enol Vitic 58:499-507
  76. Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono MA, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57 https://doi.org/10.1186/1471-2229-11-57
  77. Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic Analysis of Downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451-456
  78. Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B, Zhong GY, Simon C, Bucker ES, Myles S (2013) Vitis phylogenomics: Hybridization intensities from a SNP array outperform genotype calls. PLoS ONE 8:e78680 https://doi.org/10.1371/journal.pone.0078680
  79. Moreira FM, Madini A, Marino R, Zulini L, Stefanin M et al. (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet genomics 7:153-167 https://doi.org/10.1007/s11295-010-0322-x
  80. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007): Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935-1945 https://doi.org/10.1093/jxb/erm055
  81. Myles S, Boyko AR, Brown PJ, Grassi F, Owens CL, Aradhya M, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. PNAS 108:3530 https://doi.org/10.1073/pnas.1009363108
  82. Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PloS ONE 5:e8219 https://doi.org/10.1371/journal.pone.0008219
  83. Nakagawa S (1991) Studies on the use of Japanese native Vitis species for grape production. Osaka. Pref Univ Fac Agr Sci Rep
  84. Olmo HP (1976) Grapes, Vitis, Muscadinia (Viticeae). p.294-298. In: NW Simmonds (ed.). Evolution of crop plants. Longman, London
  85. Pearson RC, Goheen AC (1998) Compendium of grape disease. APS Press, St. Paul
  86. Pelsy F, Hocquigny S, Moncada X, Barbeau G, Forget D, Hinrichsen P, and Merdinoglu D (2010) An extensive study of the genetic diversity within seven French wine grape variety collections. Theor Appl Genet 120:1219-1231 https://doi.org/10.1007/s00122-009-1250-8
  87. Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383-1396 https://doi.org/10.1007/s00425-011-1581-y
  88. Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428 https://doi.org/10.1186/1471-2164-8-428
  89. Pontin MA, Piccoli PN, Francisco R, Botini R, Martinez-Zapater JM, Lijavetzky D (2010) Transcriptome changes in grapevines (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 21:224
  90. Ramming DW, Gabler F, Smilanick JL, Margosan DA, Cadle-Davidson M, Barba P, Mahanil S, Frenkel O, Milgroom MG, Cadle-Davidson L (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502-508 https://doi.org/10.1094/PHYTO-09-10-0237
  91. Reisch BI, Owens CL, Cousins PS (2012) Grape, p. 225-262. In: ML Badebes, DH Byrne (eds.). Fruit breeding; Handbook of plant breeding (II), Springer, New York
  92. Rex F, Fechter I, Hausmann L, Topfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock 'Borner' (V. riparia Gm183 $\times$ V. cinerea Arnold). Theor Appl Genet 127:1667-1677 https://doi.org/10.1007/s00122-014-2329-4
  93. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framewark linkage map of Vitis vinifera L. Theor Appl Genet 108:864-872 https://doi.org/10.1007/s00122-003-1488-5
  94. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059-1073 https://doi.org/10.1007/s00122-010-1511-6
  95. Riaz S, Tenscher AC, Ramming DW, Walker MA. 2011. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059-73 https://doi.org/10.1007/s00122-010-1511-6
  96. Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22-28 https://doi.org/10.1016/S0169-5347(96)10062-8
  97. Schultz HR (2007) Abiotic stress ecophysiology and grape functional genomics. In Climate change and world viticulture. Cost Action 858 Workshop: Vineyard under environmental constraints: adaptations to climate change. Poland: University of Lodz
  98. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279-292 https://doi.org/10.1046/j.1365-313X.2002.01359.x
  99. Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691 https://doi.org/10.1186/1471-2164-13-691
  100. Tattersall EAR, Grimplet J, DeLuc L, Whearley MD, Vincent D, Osborne C, Ergul A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Intergr Genomics 7:317-333 https://doi.org/10.1007/s10142-007-0051-x
  101. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Leon C, Renaudin JP, et al. 2005. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222:832-847 https://doi.org/10.1007/s00425-005-0017-y
  102. The Angiosperm Phylogeny Group (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105-121 https://doi.org/10.1111/j.1095-8339.2009.00996.x
  103. The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-468 https://doi.org/10.1038/nature06148
  104. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007. Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723-730 https://doi.org/10.1007/s00122-006-0472-2
  105. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511-519 https://doi.org/10.1016/j.tig.2006.07.008
  106. Ulm R, Nagy F (2005) Signaling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8:477-482 https://doi.org/10.1016/j.pbi.2005.07.004
  107. van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207-217
  108. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326 https://doi.org/10.1371/journal.pone.0001326
  109. Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam- Blondon A-F, Thomas M, This P, Velasco R (2008) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499-511 https://doi.org/10.1007/s00122-008-0794-3
  110. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 161:199-223
  111. Wang L, Wei J, Zou Y, Xu K, Wang Y, Cui L, Xu Y (2014) Molecular characteristics and biochemical functions of VpPR10s from Vitis pseudoreticulata associated with biotic and abiotic stresses. Intl J Mol Sci 15:19162-19182 https://doi.org/10.3390/ijms151019162
  112. Wang L, Li S (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685-694 https://doi.org/10.1016/j.plantsci.2005.09.005
  113. Wang L, Li S (2009) Heat acclimation induced acquired heat tolerance and cross adaptation in different grape cultivars: Relationships to photosynthetic energy partitioning. Funct Plant Biol 36:516-526 https://doi.org/10.1071/FP09008
  114. Waters DL, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40-58 https://doi.org/10.1007/s10142-004-0124-z
  115. Welter LJ, Gokturk-Baydar N, Akkurt M, Maul E, Eibach R, Topfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L.). Mol Breeding 20:359-374 https://doi.org/10.1007/s11032-007-9097-7
  116. Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234 https://doi.org/10.1186/1471-2229-10-234
  117. Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS ONE 8:3
  118. Xu J (2014) Next-generation sequencing: Current Technologies and Applications. Caister Academic Press, Ontario, Canada
  119. Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86:527-541 https://doi.org/10.1007/s11103-014-0245-2
  120. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152: 1787-1795 https://doi.org/10.1104/pp.109.149716
  121. Zharkikh A, Troggio M, Pruss D, Cestaro A, Eldrdge G, Pindo M, Mitchell JT, Vezzulli S, Bhatnagar S, Fontana P, et al.: (2008) Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions. J Biotechnol 136:38-43 https://doi.org/10.1016/j.jbiotec.2008.04.013

Cited by

  1. Transcriptomic analysis of ‘Campbell Early’ and ‘Muscat Bailey A’ grapevine shoots exposed to freezing cold stress vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.204
  2. Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated ‘Tamnara’ grapevines based on microarray analysis vol.43, pp.1, 2016, https://doi.org/10.5010/JPB.2016.43.1.37