DOI QR코드

DOI QR Code

Autonomous Load Balancing Method in a Wireless Network Inspired by Synchronization Phenomena in the Nature

무선 네트워크에서 자연계 동기화 현상을 모방한 자율적 부하 균형 기법

  • Park, Jaesung (The Univ. of Suwon Department of Information Security)
  • Received : 2015.09.01
  • Accepted : 2015.10.30
  • Published : 2015.11.30

Abstract

Inspired by the synchronization phenomena observed in the Nature, we propose an autonomous load balancing method for a wireless network. We model the load balancing problem of cells providing wireless access services as a synchronization problem in the Nature and design an algorithm for each cell to distribute loads in a self-determining way based on the load differences among its neighbor cells. Through simulations, we verify the feasibility of the proposed method in that cell loads can be balanced efficiently eve if cells make decision autonomously using their local information.

본 논문에서는 자연계에 존재하는 동기화 현상에 착안하여 무선 네트워크를 위한 자율적 부하균형 기법을 제안한다. 이를 위해 본 논문에서는 무선 접속 서비스를 제공하는 셀 사이의 부하균형 문제를 자연계 동기화 현상을 이용하여 모델링 한 후 각 셀들이 이웃 셀과의 부하 차이에 따라 자율적으로 부하를 분배하기 위한 알고리즘을 설계한다. 모의실험을 통해 제안 기법을 이용하여 각 셀들이 자신의 지역적 정보만을 이용하여 자율적으로 부하 분배 여부를 결정하더라도 셀 간 부하균형을 이룰 수 있다는 것을 검증하였다.

Keywords

References

  1. H. Lee, "Optimal cell selection scheme for load balancing in heterogeneous radio access networks," J. KICS, vol. 37, no. 12, pp. 1102-1112, Dec. 2012.
  2. M. Hong and S. Park, "Load balancing scheme for heterogeneous cellular networks using e-ICIC," J. KICS, vol. 39, no. 5, pp. 280-292, May 2014.
  3. W. Kim, J. Lee, and Y. Suh, "Adaptive periodic MLB algorithm for LTE femtocell networks," J. KICS, vol. 38, no. 9, pp. 764-774, Sept. 2013.
  4. 3GPP, TS 32.500, "Telecommunication Management; Self-Organizing Networks (SON); Concepts and Requirements (Release 11)," V11.1.0, Dec. 2011.
  5. Y. Xiao, Bio-Inspired Computing and Networking, CRC Press, 2011.
  6. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Dover Publications, 2003.
  7. 3GPP, TS 36.300, "Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access (E-UTRAN); Overall description; Stage 2," V8.3.0, Dec. 2007.
  8. 3GPP, TR 36.816, Evolved study on management of evolved universal terrestrial radio access network (E-UTRAN) and evolved packet core (EPC), V11.2.0, Dec. 2011.
  9. R. Nasri and Z. Altman, "Handover adaptation for dynamic load balancing in 3GPP long term evolution systems," in Proc. IEEE MoMM'07, pp. 145-153, Dec. 2007.
  10. A. El-Halaby and M. Awad, "A game theoretic scenario for LTE load balancing," in Proc. IEEE Africon 2011, pp. 1-6, Sept. 2011.
  11. H. Wang, L. Ding, P. Wu, Z. Pan, N. Liu, and X. You, "Dynamic load balancing in 3GPP LTE multi-cell networks with heterogeneous services," in Proc. IEEE CHINACOM 2010, pp. 1-5, Aug. 2010.
  12. S. S. Mwanje and A. Mitschele-Thiel, "Minimizing handover performance degradation due to LTE self organized mobility load balancing," in Proc. IEEE VTC Spring 2013, pp. 1-5, Jun. 2013.
  13. A. Lobinger, S. Stefanski, T. Jansen, and I. Balan, "Load balancing in downlink LTE self-optimizing network," in Proc. IEEE VTC Spring 2010, pp. 1-5, May 2010.
  14. R. Kwan, R. Arnott, R. Ratersion, R. Trivisonno, and M. Kubota, "On mobility load balancing for LTE systems," in Proc. IEEE VTC Fall 2010, pp. 1-5, Sept. 2010.
  15. R. E. Mirollo and S. H. Strogatz, "Synchronization of pulse coupled biological oscillators," SIAM J. Appl. Mathematics, vol. 50, no. 6, pp. 1645-1662, Dec. 1990. https://doi.org/10.1137/0150098
  16. Y. Hong and A. Scaglione, "A scalable synchronization protocol for large scale sensor networks and its applications," IEEE J. Sel. Area in Commun., vol. 23, no. 5, pp. 1085-1099, May 2005. https://doi.org/10.1109/JSAC.2005.845418
  17. J. Degesys, I. Rose, A. Patel, and R. Nagpal, "DESYNC: self Organizing desynchronization and TDMA on wireless sensor networks," in Proc. 6th Int. Symp. Inf. Process. in Sensor Netw., pp. 11-20, Apr. 2007.
  18. A. Arenas, A. Diaz-Guilera, and C. J. Perez-Vicente, "Synchronization reveals topological scales in complex networks," Physical Rev. Lett., vol. 96, no. 11, pp. 114102-114106, Mar. 2006. https://doi.org/10.1103/PhysRevLett.96.114102
  19. S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, and A. Rapisarda, "Detecting complex network modularity by dynamical clustering," Physical Rev. E, vol. 75, no. 4, pp. 045102-045106, Apr. 2007.