DOI QR코드

DOI QR Code

G/T 250톤급 양방향 차도선의 차량갑판 구조 최적설계에 관한 기초연구

Basic Research on Structural Optimum Design of G/T 250ton Class Double-ended Car-Ferry Ship

  • 강병모 ((재)한국조선해양기자재연구원) ;
  • 오영철 (목포해양대학교 해양공과대학 조선해양공학과) ;
  • 서광철 (목포해양대학교 해양공과대학 조선해양공학과) ;
  • 배동균 ((주)한국종합설계 부설연구소) ;
  • 고재용 (목포해양대학교 해양공과대학 조선해양공학과)
  • Kang, Byoung-Mo (Korea Marine Equipment Research Institute) ;
  • Oh, Young-Cheol (Dep. of Naval Architecture & Ocean Engineering, College of Marine Technology) ;
  • Seo, Kwang-Cheol (Dep. of Naval Architecture & Ocean Engineering, College of Marine Technology) ;
  • Bae, Dong-Gyun (Annex Research Institute of Korea Consolidation Design Co., Ltd.) ;
  • Ko, Jae-Yong (Dep. of Naval Architecture & Ocean Engineering, College of Marine Technology)
  • 투고 : 2015.09.18
  • 심사 : 2015.12.28
  • 발행 : 2015.12.31

초록

본 논문에서는 Goal-Driven Optimization(GDO)을 바탕으로 한 양방향 차도선의 차량갑판의 구조설계에 대하여 최적화를 수행하였다. 차량갑판의 강도와 변형에 대한 영향을 검토하여 경제적 비용을 절약할 수 있는 최적점을 결정하였다. 실험계획법(DOE)과 반응표면법을 바탕으로 한 갑판두께를 110% 증가시켜 차량갑판의 강도와 강성을 높일 수 있었다. 이 결과에 대한 회귀분석을 수행하여 3차 다항식 모형인 최적 회귀모형식으로 제안하며 결정계수 $R^2$ 0.98정도로 나타내어 신뢰성을 확보할 수 있었다.

In this paper, It was performed to optimize for the deck's structural design of a double ended car ferry ship respect to Goal-Driven Optimization (GDO). It was examined for the strength and deformation of the deck and determined to save economic cost the optimal point. The deck thickness based on the Design of Experiments (DOE) and response surface method was increased to 110%. and can improve the deck's strength and stiffness. By performing the regression analysis respect to the result, we propose the optimal regression model formula as a third degree polynomial regression models. The coefficient of determination $R^2$ was about 0.98 and reliability could be obtained.

키워드

참고문헌

  1. Alinia, M. M. and S. H. Moosavi(2008), A parametric study on the longitudinal stiffeners of web panels, Thin-Walled Structures Vol. 46, pp. 1213-1223. https://doi.org/10.1016/j.tws.2008.02.004
  2. ANSYS Inc(2000), ANSYS theory manual, Nonlinear buckling problem, Chapter 3, Part4, pp. 120-132.
  3. Berg, J(2012), Better design of wheel-loaded decks, KTH Engineering Sciences, pp. 1-31.
  4. BV(2012), Rules for the Classification of Steel Ships, pp. 219-241.
  5. DNV(2012), Rules for Classification of Ships Pt 5 Ch 2: Passenger and Dry Cargo Ships, pp. 7-61.
  6. Emanuele, M., P. Carlo. and M. Claudio(2010), Influence of longitudinal stiffeners on elastic stability of girder webs, Journal of Constructional Steel Research Vol. 67, pp. 51-64.
  7. Junbo, J. and U. Anders(2004), A parametric study for the structural behaviour of a lightweight deck, Engineering Structures Vol. 26, pp. 963-977. https://doi.org/10.1016/j.engstruct.2004.03.001
  8. Kang, B. M. and Y. C. Oh, D. G. Bae, K. C. Seo, J. Y. Ko(2015), A Study on Shaft Dynamic Characteristic for G/T 250TON Double-Ended Car-Ferry, Journal of The Korean Society of Marine Environment & Safety Vol. 21, No. 1, pp. 83-90. https://doi.org/10.7837/kosomes.2015.21.1.083
  9. Kang, H. S. and J. M. Lee, Y. J. Kim(2015), Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method, Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 5, pp. 435-441 https://doi.org/10.3795/KSME-B.2015.39.5.435
  10. KR(2015), Rules for the Classification of Steel Ships Pt 7: Ships of Special Service, pp. 1-167.
  11. RINA(2012), Rules for the Classification of Ships Part B: Hull and Stability, pp. 77-110.