고주파 온열치료시 케모포트의 열적 변화 연구

The study of thermal change by chemoport in radiofrequency hyperthermia

  • 이승훈 (전북대학교병원 방사선종양학과 / 전북대학교병원 의학생명 연구소) ;
  • 이선영 (전북대학교병원 방사선종양학과 / 전북대학교병원 의학생명 연구소) ;
  • 김양수 (전북대학교병원 방사선종양학과 / 전북대학교병원 의학생명 연구소) ;
  • ;
  • 양명식 (전북대학교병원 방사선종양학과 / 전북대학교병원 의학생명 연구소) ;
  • 차석용 (전북대학교병원 방사선종양학과 / 전북대학교병원 의학생명 연구소)
  • Lee, seung hoon (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Lee, sun young (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Gim, yang soo (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Kwak, Keun tak (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Yang, myung sik (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Cha, seok yong (Department of Radiation Oncology, Chonbuk National University Hospital / Department of Reserch Institute of Clinical Medicine Chonbuk Nation University-Biomedical Research Institute of Chonbuk National University Hospital)
  • 투고 : 2015.10.02
  • 심사 : 2015.12.09
  • 발행 : 2015.12.31

초록

목 적 : 고주파 온열치료 시 약물투여 및 혈액채취에 사용되는 케모포트로 인한 열적 변화를 알아보고자 한다. 대상 및 방법 : 전극 크기 20 cm인 고주파 온열치료기(EHY-2000, Oncotherm Kft, Hungary)를 이용하여 현재 본원에서 사용 중인 케모포트 중 재질이 플라스틱인 소재, 티타늄을 둘러싼 에폭시 소재와 티타늄 소재 케모포트를 자체 제작한 직경 20 cm, 높이 20 cm 원통형 한천(Agar)팬텀에 삽입하여 온도를 측정하였다. 온도측정기(TM-100, Oncotherm Kft, Hungary) 그리고 Sim4Life(Ver2.0, ZMT, Zurich, Switzerland) 프로그램을 사용하여 실제 측정된 온도변화와 비교 분석하였다. 측정위치는 전극 중심축 및 중심축 측면 1.5 cm지점에 각각 0 cm(표면), 0.5 cm, 1.8 cm, 2.8 cm 깊이별로 하였다. 측정조건은 온도 $24.5{\sim}25.5^{\circ}C$, 습도 30 ~ 32%, 출력 전력 100 W로 5분 간격으로 총 60분을 측정 하였다. 결 과 : 케모포트 미사용, 플라스틱, 에폭시 그리고 티타늄 케모포트를 사용한 경우의 최고온도는 전극 중심축 2.8 cm 깊이에서 측정값 $39.51^{\circ}C$, $39.11^{\circ}C$, $38.81^{\circ}C$, $40.64^{\circ}C$와 모의실험값 $42.20^{\circ}C$, $41.50^{\circ}C$, $40.70^{\circ}C$, $42.50^{\circ}C$이며, 전극 중심축 1.5 cm 측면 2.8 cm 깊이에서 측정값 $39.51^{\circ}C$, $39.32^{\circ}C$, $39.20^{\circ}C$, $39.46^{\circ}C$와 모의실험값 $42.00^{\circ}C$, $41.80^{\circ}C$, $41.20^{\circ}C$, $42.30^{\circ}C$이다. 고안 및 결론 : 고주파 전자기장에 의한 케모포트 주위의 열적 변화량은 부도체 물질인 플라스틱과 에폭시 소재에서 미사용의 경우보다 낮게 나타났으며, 도체 물질인 티타늄 케모포트에서는 약간의 차이를 보였다. 이는 케모포트내 금속 함유량 및 기하학적 구조에 의한 것과 이용 장비의 낮은 고주파 대역를 사용함에 있는 것으로 여겨진다. 즉 본 연구에 사용된 케모포트는 열 변화가 미미하여 장해를 고려하지 않아도 된다고 사료된다.

Purpose : This study evaluate the thermal changes caused by use of the chemoport for drug administration and blood sampling during radiofrequency hyperthermia. Materials and Methods : 20cm size of the electrode radio frequency hyperthermia (EHY-2000, Oncotherm KFT, Hungary) was used. The materials of the chemoport in our hospital from currently being used therapy are plastics, metal-containing epoxy and titanium that were made of the diameter 20 cm, height 20 cm insertion of the self-made cylindrical Agar phantom to measure the temperature. Thermoscope(TM-100, Oncotherm Kft, Hungary) and Sim4Life (Ver2.0, Zurich, Switzerland) was compared to the actual measured temperature. Each of the electrode measurement position is the central axis and the central axis side 1.5 cm, 0 cm(surface), 0.5 cm, 1.8 cm, 2.8 cm in depth was respectively measured. The measured temperature is $24.5{\sim}25.5^{\circ}C$, humidity is 30% ~ 32%. In five-minute intervals to measure the output power of 100W, 60 min. Results : In the electrode central axis 2.8 cm depth, the maximum temperature of the case with the unused of the chemoport, plastic, epoxy and titanium were respectively $39.51^{\circ}C$, $39.11^{\circ}C$, $38.81^{\circ}C$, $40.64^{\circ}C$, simulated experimental data were $42.20^{\circ}C$, $41.50^{\circ}C$, $40.70^{\circ}C$, $42.50^{\circ}C$. And in the central axis electrode side 1.5 cm depth 2.8 cm, mesured data were $39.37^{\circ}C$, $39.32^{\circ}C$, $39.20^{\circ}C$, $39.46^{\circ}C$, the simulated experimental data were $42.00^{\circ}C$, $41.80^{\circ}C$, $41.20^{\circ}C$, $42.30^{\circ}C$. Conclusion : The thermal variations were caused by radiofrequency electromagnetic field surrounding the chemoport showed lower than in the case of unused in non-conductive plastic material and epoxy material, the titanum chemoport that made of conductor materials showed a slight differences. This is due to the metal contents in the chemoport and the geometry of the chemoport. And because it uses a low radio frequency bandwidth of the used equipment. That is, although use of the chemoport in this study do not significantly affect the surrounding tissue. That is, because the thermal change is insignificant, it is suggested that the hazard of the chemoport used in this study doesn't need to be considered.

키워드

참고문헌

  1. Falk MH, Issels RD: Hyperthermia in Oncology. Int J Hyperthermia 2001;17:1-18 https://doi.org/10.1080/02656730118511
  2. Lim CU, Zhang Y, Fox MH: Cell cycle dependent apoptosis and cell cycle blocks induced by hyperthermia in HL-60 cells. Int J Hyperthermia 2006;22:77-91 https://doi.org/10.1080/02656730500430538
  3. Zagar TM, Oleson JR, Vujaskovic Z, et al: Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: A review of the randomised date. Int J Hyperthermia 2010;26:612-617 https://doi.org/10.3109/02656736.2010.487194
  4. Linthorst M, van Geel AN, Baaijens M et al: Reirradiation and hyperthermia after surgery for recurrent breast cancer. Radiother Oncol 2013;109:188-193 https://doi.org/10.1016/j.radonc.2013.05.010
  5. Feyerabend T, Wiedemann GJ, Jager B et al: Local hyperthermia, radiation, and chemotherapy in recurrent breast cancer is feasible and effective except for inflammatory disease. Int J Hyperthermia 2001;49:1317-1325
  6. Van Rhoon GC, Rietveld PJM, Van der Zee J: A 433 MHz Lucite Cone waveguide applicator for superficial hyperthermia. Int J Hyperthermia 1998;41:13-27
  7. Lee YH, Oh YK, Kim HY, et al: Assessment for temperature according to the electrode diameter of radiofrequency hyperthermia using agar phantom. Prog Med Phys 2014;25:1-7 https://doi.org/10.14316/pmp.2014.25.1.1
  8. Sugarbaker PH, Suqarbaker C, Stephens AD, Chang D: Radiofrequency hyperthermia in the palliative treatment of mucinous carcinomatosis of appendiceal origin: optimizing and monitoring heat delivery in western patients. Int J Hyperthermia 2000;16:429-441 https://doi.org/10.1080/026567300416721
  9. Pankhurst QA, Connolly J, Jones SK, Dobson J: Applications of magnetic nanoparticles in biomedicine. J Phys D 2003;36:167-181 https://doi.org/10.1088/0022-3727/36/13/201
  10. Hegyi G, Szigeti GP, Szasz A: Hyperthrmia versus Oncothermia: Cellular Effect in Complementary Cancer Therapy. Evid Based Complement Alternat Med 2013;2013:672873
  11. Virtanen H, Keshvari J, Lappalainen R: Interaction of radio frequency electromagnetic fields and passive metallic implants: a brief review. Bioelectromagnetics 2006;27431-439
  12. Bassen H, Kainz W, Mendoza G, Kellom T: MRI-induced heating of thin wire metallic implantslaboratory and compautational studies-findings and questions raised. Minim Invasive Ther Allied Technol 2006;15:76-84 https://doi.org/10.1080/13645700600640931
  13. Hocking B, Joyner KH, Fleming HJ: Implanted medical devices in workers exposed to radiofrequency radiation. Scand J Work Environ Health 1991;17:1-6 https://doi.org/10.5271/sjweh.1740
  14. Mobashsher AT, Abbosh AM: Artificial human phantoms: Human proxy in testing microwave apparatus that have electromagnetic interaction with the human body. IEEE Microw Mag 2015;16:42-62 https://doi.org/10.1109/MMM.2015.2419772
  15. Kato H, Hiraoka M, Ishida T: An agar phantom for hyperthermia. Med Phys 1986;13:396-398 https://doi.org/10.1118/1.595882
  16. 홍익표: 영역분할법을 이용한 2차원 유한차분 시간영역법 해석. 한국정보통신학회지 2013;17:1049-1054
  17. Neufeld E: High resolution hyperthermia treatment planning. Zurich, Switzerland: Swiss Federal Institute of Technology. (Thesis). 2008
  18. Pannes HH: Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;85:5-34
  19. Xu R, Zhang Y, Ma, et al: Measurement of specific absorption rate and thermal simulation for arterial embolization hyperthermia in the maghemite-gelled model. IEEE Trans. Magn 2007;43:1078-1085 https://doi.org/10.1109/TMAG.2006.888737
  20. 권정태, 이창경, 허철, 조맹익, 김기영, 권영철: 심층수 이용 열교환기 개발을 위한 기초연구: 열교환기 재질이 열교환기 성능에 미치는 영향. J Korea Acad Indus Soci 2013;14:4658-4664
  21. Trujillo-Romero CJ, Paulides MM, Drizdal T, van Rhoon GC: Impact of silicone and metal port-a-cath implants on superifical hyperthermia treatment quality. Int J Hyperthermia 2015;31:15-22 https://doi.org/10.3109/02656736.2014.985748
  22. Shellock FG, Shellock VJ: Vascular access ports and catheters tested for ferromagnetism, heating, and artifacts associated with MR imaging. Magn Reson imaging 1996;14:443-447 https://doi.org/10.1016/0730-725X(95)02114-9
  23. Wheeler HA: Formulas for the skin effect. Proc I R E 1942;30:412-424 https://doi.org/10.1109/JRPROC.1942.232015
  24. 정재훈, 김희제, 김수원 : 트랜스포머 자가LC공진을 이용한 고전압 유전 가열 연구 . KIEE Trans 2012;61:1877-1879
  25. Bassen H, Kainz W, Mendoza G, Kellom T: MRI-induced heating of selected thin wire metallic implants-laboratory and computational studiesfingings and questions raised. Minim Invasive Ther. Allied Technol 2006;15:76-84 https://doi.org/10.1080/13645700600640931
  26. McIntosh RL, Anderson V, McKenzie RJ: A numerical evaluation of SAR distribution and temperature change around a metallic plate in the head of a RF exposed worker. Bioelectromagnetic 2005;26:377-388 https://doi.org/10.1002/bem.20112