DOI QR코드

DOI QR Code

General Theorem for Explicit Evaluations and Reciprocity Theorems for Ramanujan-Göllnitz-Gordon Continued Fraction

  • SAIKIA, NIPEN (Department of Mathematics, Rajiv Gandhi University)
  • 투고 : 2014.02.13
  • 심사 : 2014.08.21
  • 발행 : 2015.12.23

초록

In the paper A new parameter for Ramanujan's theta-functions and explicit values, Arab J. Math. Sc., 18 (2012), 105-119, Saikia studied the parameter $A_{k,n}$ involving Ramanujan's theta-functions ${\phi}(q)$ and ${\psi}(q)$ for any positive real numbers k and n and applied it to find explicit values of ${\psi}(q)$. As more application to the parameter $A_{k,n}$, in this paper we prove a new general theorem for explicit evaluation of Ramanujan-$G{\ddot{o}}llnitz$-Gordon continued fraction K(q) in terms of the parameter $A_{k,n}$ and give examples. We also find some new explicit values of the parameter $A_{k,n}$ and offer reciprocity theorems for the continued fraction K(q).

키워드

참고문헌

  1. N. D. Baruah and N. Saikia, Explicit evaluations of Ramanujan-Gollnitz-Gordon continued fraction, Monatsh. Math., 154(2008), 271-288. https://doi.org/10.1007/s00605-007-0515-z
  2. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
  3. H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith., 73(1995), 343-355. https://doi.org/10.4064/aa-73-4-343-355
  4. H. H. Chan and S.-S. Huang, On the Ramanujan-Gollnitz-Gordon continued fraction, Ramanujan J., 1(1997), 75-90. https://doi.org/10.1023/A:1009767205471
  5. K. G. Ramanathan, On Ramanujans continued fraction, Acta Arith., 43(1984), 209-226. https://doi.org/10.4064/aa-43-3-209-226
  6. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
  7. N. Saikia, A new parameter for Ramanujan's theta-fucntions and explicit values, Arab J. Math. Sc., 18(2012), 105-119. https://doi.org/10.1016/j.ajmsc.2012.01.004
  8. N. Saikia, On modular identities of Ramanujan-Gollnitz-Gordon continued fraction, Far East J. Math. Sc., 54(1)(2011), 65-79.
  9. K. R. Vasuki and B. R. Srivatsa Kumar, Certain identities for Ramanujan-Gollnitz Gordon continued fraction, J. Comput. Appl. Math., 187(2006), 87-95. https://doi.org/10.1016/j.cam.2005.03.038
  10. G. N.Watson, Theorems stated by Ramanujan(ix): two continued fractions, J. London Math. Soc., 4(1929), 231237.
  11. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966. Indian edition is published by Universal Book Stall, New Delhi, 1991.

피인용 문헌

  1. New theta-function identities and general theorems for the explicit evaluations of Ramanujan’s continued fractions vol.5, pp.3, 2016, https://doi.org/10.1007/s40065-016-0149-x