DOI QR코드

DOI QR Code

On a Class of Spirallike Functions associated with a Fractional Calculus Operator

  • 투고 : 2014.08.16
  • 심사 : 2015.11.03
  • 발행 : 2015.12.23

초록

In this article, by making use of a linear multiplier fractional differential operator $D^{{\delta},m}_{\lambda}$, we introduce a new subclass of spiral-like functions. The main object is to provide some subordination results for functions in this class. We also find sufficient conditions for a function to be in the class and derive Fekete-$Szeg{\ddot{o}}$ inequalities.

키워드

참고문헌

  1. F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 2004(25-28), 1429-1436. https://doi.org/10.1155/S0161171204108090
  2. F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(1)(2008), 655-667. https://doi.org/10.1016/j.jmaa.2007.05.087
  3. F. M. Al-Oboudi and K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl., 354(2)(2009), 412-420. https://doi.org/10.1016/j.jmaa.2008.10.025
  4. E. Deniz, M. Caglar and H. Orhan, The Fekete-Szego problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J., 35(3)(2012), 439-462. https://doi.org/10.2996/kmj/1352985448
  5. M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc., 8(1933), 85-89.
  6. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
  7. O. S. Kwon and S. Owa, The subordination theorem for $\lambda$-spirallike functions of order ${\alpha}$, Int. J. Appl. Math., 11(2)(2002), 113-119.
  8. R. J. Libera, Univalent ${\alpha}$-spiral functions, Canad. J. Math., 19(1967), 449-456. https://doi.org/10.4153/CJM-1967-038-0
  9. S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
  10. A. K. Mishra and P. Gochhayat, Fekete-Szego problem for a class defined by an integral operator, Kodai Math. J., 33(2)(2010), 310-328. https://doi.org/10.2996/kmj/1278076345
  11. G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator Integral Transforms Spec. Funct., 23(2)(2012), 97-103. https://doi.org/10.1080/10652469.2011.562501
  12. H. Orhan, D. Raducanu, M. Caglar and Mustafa Bayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Appl. Anal., 2013, Art. ID 415319, 7 pp.
  13. S. Owa, On the distortion theorems. I, Kyungpook Math. J., 18(1)(1978), 53-59.
  14. S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(5)(1987), 1057-1077. https://doi.org/10.4153/CJM-1987-054-3
  15. A. Pfluger, The Fekete-Szego inequality for complex parameters, Complex Variables Theory Appl., 7(1-3)(1986), 149-160. https://doi.org/10.1080/17476938608814195
  16. G. S. Salagean, Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
  17. C. Selvaraj and K. A. Selvakumaran, Fekete-Szego problem for some subclasses of analytic functions, Far East J. Math. Sci., (FJMS) 29(3)(2008), 643-652.
  18. H. Silverman, Sufficient conditions for spiral-likeness, Internat. J. Math. Math. Sci., 12(4)(1989), 641-644. https://doi.org/10.1155/S0161171289000797
  19. S. Singh, A subordination theorem for spirallike functions, Int. J. Math. Math. Sci., 24(7)(2000), 433-435. https://doi.org/10.1155/S0161171200004634
  20. L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pro Pestovani Matematiky a Fysiky, 62(1933), 12-19.
  21. H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39(3-4)(2000), 57-69.
  22. H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44(2)(2001), 145-163. https://doi.org/10.1080/17476930108815351
  23. H. M. Srivastava, A. K. Mishra and S. N. Kund, Certain classes of analytic functions associated with iterations of the Owa-Srivastava fractional derivative operator, Southeast Asian Bull. Math., 37(3)(2013), 413-435.
  24. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12(1961), 689-693. https://doi.org/10.1090/S0002-9939-1961-0125214-5