DOI QR코드

DOI QR Code

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections

불균일 단면을 갖는 단순지지 보의 모달해석 및 실험

  • Kim, In-Woo (Agency for Defense Development) ;
  • Ryu, Bong-Jo (Department of Mechanical Engineering, Hanbat National University) ;
  • Kim, Youngshik (Department of Mechanical Engineering, Hanbat National University)
  • Received : 2015.10.20
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

기계, 건축, 토목공학 분야 등에는 불균일 단면을 갖는 보 형태의 구조물들이 널리 사용되고 있다. 본 논문은 양단이 단순 지지된 보 구조물들의 동특성과 진동에 대한 문제를 다루며, 국부좌표를 사용한 지배방정식이 유도된다. 갤러킨의 모드합 방법으로 해가 가정되고, 고유진동수를 구하는 행렬식을 푸는 데는 이분법을 적용하였다. 유한요소법이 단지 기하학적 경계조건만을 만족시키는 허용함수를 사용하는 반면, 본 논문에서는 갤러킨의 모드합 방법을 적용하여, 지배방정식과 경계조건을 모두 만족하는 고유함수를 사용하였다. 계의 동특성을 알기위해, 네 종류의 불균일 단면을 갖는 단순 지지 보에 대해 모달 해석과 시험이 수행되었으며, 해석 결과는 실험 결과와 근사한 일치를 나타내었다.

Keywords

References

  1. A. C. Heidebrecht, "Vibration of Non-Uniform Simply-Supported Beams", Journal of the Engineering Mechanics Division, ASCE, Vol. 93, No. 2, pp.1-15, 1967.
  2. H. C. Wang, "Generalized Hypergeometric Function Solutions on Transverse Vibrations of a Class of Nonuniform Beams", Journal of Applied Mechanics, Vol. 34, pp.702-708, 1968. DOI: http://dx.doi.org/10.1115/1.3607764
  3. L. Klein, "Transverse Vibrations of Non-UniformBeams", Journal of Sound and Vibration, Vol. 37, No. 4, pp.491-505, 1974. DOI: http://dx.doi.org/10.1016/S0022-460X(74)80029-5
  4. A. K. Gupta, "Vibration of Tapered Beams", Journal of Structural Engineering, Vol. 111, No. 1, pp.19-36, 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(19)
  5. S. Y. Lee, H. Y. Ke and Y. H. Kuo, "Analysis of Non-uniform Beam Vibration", Journal of Sound and Vibration, Vol. 142, No. 1, pp.15-29, 1990. DOI: http://dx.doi.org/10.1016/0022-460X(90)90580-S
  6. B. K. Lee, K. K. Park, S. J. Oh and J. M. Mo,"Free Vibrations of Beams with Static Deflections due to Dead Load", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 4, No. 4, pp.451-457, 1994.
  7. K. J. Kang and B. S. Kim, "In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation using DQM", Journal of the Korea Academia-Industrial cooperation Society, Vol. 7, No. 5, pp.788-792, 2006.
  8. Z. R. Lu, M. Huang, J. K. Liu, W. H. Chen and W. Y. Liao, "Vibration Analysis of Multiple-Stepped Beams with the Composite Element Model", Journal of Sound and Vibration, Vol. 332, No. 4-5, pp.1070-1080, 2009.
  9. S. K. Lim and O. S. Song, "Free Vibration Analysis of Composite H-Type Cross-section Beams", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 20, No. 5, pp.492-501, 2010. DOI : http://dx.doi.org/10.5050/KSNVE.2010.20.5.492
  10. B. K. Lee, S. J. Oh, C. E. Park and T. E. Lee, "Free Vibrations of Tapered Beams with Constant Surface Area", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 21, No. 1, pp.66-73, 2011. DOI : http://dx.doi.org/10.5050/KSNVE.2011.21.1.066
  11. J. W. Lee, J. H. Kim and J. Y. Lee, "Exact Solutions for Bending Vibration of Beam with Linearly Reduced Width Along Its Length", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 25, No. 6, pp.66-73, 2015. DOI : http://dx.doi.org/10.5050/KSNVE.2015.25.6.420
  12. D. J. Gorman, Free Vibration Analysis of Beams and Shafts, Newyork, John Wiley and Sons, 1975.
  13. D. J. Ewins, Modal Testing : Theory and Practice, Research Studies Press Ltd., pp.153-196, 1984.