DOI QR코드

DOI QR Code

Analysis on Rainfall Distribution in a Large Experimental Rainfall Simulator with Fixed Nozzle Arrangement

고정식 노즐 배치를 가진 대형 강우모사장치의 강우 분포 특성 분석

  • Lee, Chan-Joo (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jong Pil (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jin-Won (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Won (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 이찬주 (한국건설기술연구원 수자원하천연구소) ;
  • 김종필 (한국건설기술연구원 수자원하천연구소) ;
  • 이진원 (한국건설기술연구원 수자원하천연구소) ;
  • 김원 (한국건설기술연구원 수자원하천연구소)
  • Received : 2015.11.09
  • Accepted : 2015.12.04
  • Published : 2015.12.31

Abstract

This study provides results from the experiment on the rainfall distribution using a large Experimental rainfall simulator with fixed nozzle arrangement. Results from the experiment on the nozzles which are crucial for rainfall simulation show standard errors expressed as percentage are 0.15~0.38% at the indoor flow testing apparatus and 0.37~0.59% at the KICT-ERS. To examine spraying range of the nozzles, radial and triangular rainfall measurement test are done. In the radial test, coefficient of uniformity (CU) lies in 0.348~0.657 in the single nozzle spraying case, while it increases up to 0.854~0.895 in the seven nozzle spraying case. This means increase of both rain rate and uniformity by means of superimposition of spraying. The CU of the triangular test falls to 0.845~0.896. The results from the experiment on the whole-scale of the KICT-ERS show that CU exceeds 0.7 for every case except the one experimental condition where a $1.5{\phi}$ nozzle is used. The CU tends to increase with increasing rainfall intensity. Comparison with the previous studies shows that KICT-ERS provides rainfall distribution above average CU.

본 논문에서는 고정식 노즐 배치를 가진 대형 강우모사장치(KICT-ERS)와 이를 이용한 강우 분포 실험결과를 분석하였다. 강우 분사에 영향을 미치는 노즐 유량 실험 결과 실내 장치를 이용한 표준오차의 백분율은 0.15~0.38%였으며, KICT-ERS에 장착한 오차는 0.37~0.59%로 나타났다. 노즐의 분사 범위를 검토하기 위한 방사형과 삼각형 실험을 실시하였다. 방사형 실험에서 1개 노즐 분사시 균일계수가 0.348~0.657이었으나 주변 노즐을 포함할 경우 균일계수가 0.854~0.895로 높아져서 노즐 분사의 중첩에 의한 강우강도 증가 및 균일도 제고가 확인되었다. 삼각형 실험 결과의 균일계수는 0.845~0.896으로 나타났다. KICT-ERS 전체 범위에 대한 실험 결과 $1.5{\phi}$ 노즐의 1개 실험 케이스를 제외하면 모든 조건에서 균일계수는 0.7을 넘었으며, 균일계수는 강우강도가 증가함에 따라 높아지는 특성을 보였다. 기존 연구와의 비교 결과 KICT-ERS는 대체로 평균 이상의 균일계수를 제공하는 것으로 나타났다.

Keywords

References

  1. J. D. Pelletier, "Drainage basin evolution in the Rainfall Erosion Facility: dependence on initial conditions", Geomorphology, Vol. 53, pp. 183-196, 2003 DOI: http://dx.doi.org/10.1016/S0169-555X(02)00353-7
  2. M-I. Kim, B-G, Chae, G-C, Jung, "A laboratory test for detecting the infiltrating characteristics of unsaturated soil in soil slide", The journal of Engineering Geology, Vol. 15, No. 4, pp. 487-494, 2005
  3. I. Abudi, G. Carmi, P. Berliner, "Rainfall simulator for field runoff studies", Journal of Hydrology, Vol. 454-455, pp. 76-81, 2012 DOI: http://dx.doi.org/10.1016/j.jhydrol.2012.05.056
  4. R. Corona, T. Wilson, L. P. D'Adderio, F. Porcu, N. Montaldo, J. Albertson, "On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy", Procedia Environmental Sciences, Vol. 19, pp. 875-884, 2013 DOI: http://dx.doi.org/10.1016/j.proenv.2013.06.097
  5. B. Lascelles, D. T. Favis-Mortlock, A. J. Parsons, A. J. T. Guerra, "Spatial and temporal variation in two rainfall simulators: implications for spatially explicit rainfall simulation experiments", Earth Surface Processes and Landforms, Vol. 25, No. 7, pp. 709-721, 2000 DOI: http://dx.doi.org/10.1002/1096-9837(200007)25:7%3C709::AID-ESP126%3E3.0.CO;2-K
  6. S-H. Kim, "Pore water pressure characteristic of unsaturated weathered granite soil slopes through rainfall simulation", Journal of the Korea Academia-Industrial Co-operation Society, Vol. 19, No. 11, pp. 3287-3295, 2009 DOI: http://dx.doi.org/10.5762/KAIS.2009.10.11.3287
  7. B-G. Chae, S-H. Lee, Y-S. Song, Y-C, Cho, Y-S. Seo, "Characterization on the relationship among rainfall intensity, slope angle and pore water pressure by a flume test: in case of gneissic weathered soil", The Journal of Engineering Geology, Vol. 17, No. 1, pp. 57-64, 2007
  8. Y. S. Jang, M. E. Kim, J. S. Baek, H. S. Shin, "The study on development and verification of rainfall-runoff simulator for LID technology verification", Journal of Korea Water Resources Association, Vol. 47, No. 6, pp. 513-522, 2014 DOI: http://dx.doi.org/10.3741/JKWRA.2014.47.6.513
  9. S. Takakura, M. Yoshioka, T. Ishizawa, N. Sakai, "Geoelectrical monitoring for observation of changes in water content in the slope of an embankment caused by heavy rain using a large-scale rainfall simulator", AGU Fall meeting 2014, abstract #NS33A-3944, 2014
  10. J. Ryde, N. Hillier, "Performance of laser and radar ranging devices in adverse environmental conditions", Journal of Field Robotics, Vol. 26, No. 9, pp. 712-727, 2009 DOI: http://dx.doi.org/10.1002/rob.20310
  11. NIED(National Research Institute for Earth Science and Disaster Prevention), Large-scale rainfall simulator, 2005
  12. B-G. Chae, Y-S. Song, Y-S. Seo, Y-C. Cho, W-Y. Kim, "A test for characterization on landslides triggering and flow features of debris using a flume test equipment", The Journal of Engineering Geology, Vol. 16, No. 3, pp. 275-282, 2006
  13. W-S. Ki, S-H. Kim, "Soil water characteristic curve of the weathered granite soil through simulated rainfall system and SWCC cell test", The Journal of Engineering Geology, Vol. 18, No. 4, pp. 523-535, 2008
  14. J. Morin, S. Goldberg, I. Seginer, "A rainfall simulator with a rotating disc", Transactions of American Society of Agricultural Engineering, Vol. 10, pp. 74-79, 1967 DOI: http://dx.doi.org/10.13031/2013.39599
  15. W. P. Miller, "A solenoid-operated, variable intensity rainfall simulator", Soil Science of America Journal, Vol. 51, pp. 832-834, 1987 DOI: http://dx.doi.org/10.2136/sssaj1987.03615995005100030048x
  16. C. T. Hignett, S. Gusli, A. Cass, W, Besz, "An automated laboratory rainfall simulation system with controlled rainfall intensity, raindrop energy and soil drainage", Soil Technology, Vol. 8, pp. 31-42, 1995 DOI: http://dx.doi.org/10.1016/0933-3630(95)00004-2
  17. M. Esteves, O. Planchon, J. M. Lapetite, N. Silvera, P. Cadet, "The 'EMIRE' large rainfall simulator: design and field testing", Earth Surface Processes and Landforms, Vol. 25, No. 7, pp. 681-690, 2000 DOI: http://dx.doi.org/10.1002/1096-9837(200007)25:7%3C681::AID-ESP124%3E3.0.CO;2-8
  18. S. A. Schumm, "Geomorphic thresholds and complex response of drainage systems", in M. Morisawa (ed.) Fluvial Geomorphology, Binghamton, Publication in Geomorphology 3, pp. 299-310, 1973
  19. Y. Kitagawa, G. Fujiwara, Y. Nakamura, "Experimental facility for rainfall and drainage", 1999
  20. C-J. Lee, W. Kim, G-W. Wee, G-O. Lee, "Design and tentative operation of a rainfall simulator", Proceedings of fall conference of The Korea Academia-Industrial cooperation Society, 2014
  21. G. Tanner, K. F. Knasiak, "Spray characterization of typical fire supression nozzles", Proceedings of the 3rd International Water Mist Conference, Madrid, Spain, 2003
  22. J. E. Christiansen, "The uniformity of application of water by sprinkler system". Agricultural Engineering, Vol. 22, pp. 89-92