DOI QR코드

DOI QR Code

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves

다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성

  • Received : 2015.10.20
  • Accepted : 2015.11.06
  • Published : 2015.11.30

Abstract

Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

식물공장은 환경적 조건을 조절하여 계절이나 장소에 관계없이 농산물을 일정하게 생산하는 식물재배 시스템이다. 식물공장에 있어서 내부의 열 유동은 식물공장의 중요한 변수이다. 본 논문에서는 다층 재배선반을 갖는 하이브리드 식물공장 내의 열유동 특성을 수치 시뮬레이션을 통해 연구하였다. 열 유동 특성의 수치해를 얻기 위해 유한체적법(Finite Volume Method)을 이용하였다. 수치해석 모델에 있어서는 저 레이놀드수(low Reynolds number) ${\kappa}-{\epsilon}$ 난류모델을 이용하였으며, 해석방법으로는 비압축성 점성유동 영역과 압력경계 조건을 사용하였다. 수치해석에 있어, 3종류의 유입 공기속도와 재배선반의 위치변화에 따른 식물공장 내의 열유동 특성을 상용 프로그램인 Solid Works Flow simulation을 사용하였다. 수치해석을 통한 결론은 다음과 같다. 첫째, 송풍기를 통한 식물공장 내의 유입 공기속도를 1.6 m/s로 하였을 때, Case 3의 재배선반 배치가 비교적 균일한 온도 분포를 나타내었고, LED광만을 사용한 Case 1의 배치는 시험베드(test bed) TB2와 TB3 영역의 낮은 온도분포로 인하여 서큘레이터 등을 통한 추가적인 온도 제어가 필요할 것으로 판단되었다. 둘째, 식물재배 LED 인공광(DYLED47)의 청색광과 적색광의 비율을 1:1로 100% 구동 시, 재배선반의 평균 온도가 약 $3^{\circ}C$ 증가하였다. 본 논문은 한국산학기술학회 논문지 심사용 투고요령입니다.

Keywords

References

  1. W. P. Jones and B. E. Launder, "The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence", International Journal of Heat and Mass Transfer, Vol. 16, No. 6, pp. 1119-1130, 1973. DOI: http://dx.doi.org/10.1016/0017-9310(73)90125-7
  2. B. E. Launder and B. I. Sharma, "Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc", Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138, 1974. DOI: http://dx.doi.org/10.1016/0735-1933(74)90024-4
  3. L. Okushima, S. Sase and M. Nara, "A support system for natural ventilation design of greenhouses based on computational aerodynamics", Acta Horticulture, Vol. 248, No. 13, pp. 129-136, 1989. DOI: http://dx.doi.org/10.17660/ActaHortic.1989.248.13
  4. J. I. Montero, P. Munoz and A. Anton, "Discharge coefficients of greenhouse windows with insect-proof screens", Acta Horticulture, Vol. 443, No. 8, pp. 71- 77, 1997. DOI: http://dx.doi.org/10.17660/ActaHortic.1997.443.8
  5. T. Boulard, M. A. Lamrnai, J. C. Roy, A. Jaffrin and L. Bouirden, "Natural ventilation by thermal effect in a one-half scale model mono-span greenhouse", Transactions of ASAE, Vol. 41, No. 3, pp. 773-781, 1998. DOI: http://dx.doi.org/10.13031/2013.17214
  6. M. Kacira, T. H. Short, and R. R. Stowell, "A CFD evaluation of naturally ventilated multi-span sawtooth greenhouses", Transactions of ASAE Vol. 41, No. 3, pp. 833-836, 1998. DOI: http://dx.doi.org/10.13031/2013.17222
  7. I. Lee, and T. H. Short, "Verification of computational fluid dynamics temperature simulations in a full-scale naturally ventilated greenhouse", Transactions of ASAE, Vol. 44, No. 5, pp. 1717-1726, 2001.
  8. C. Kittas, T. Bartzanas and A. Jaffrin, "Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads", Biosystems Engineering, Vol. 85, pp. 87-94, 2003. DOI: http://dx.doi.org/10.13031/2013.17803
  9. M. Kacira, S. Sase and L. Okushima, "Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation", Transactions of ASAE, Vol. 47, No. 6, pp. 2059-2067, 2004. DOI: http://dx.doi.org/10.13031/2013.17803
  10. T. Bartzanas, T. Boulard, and C. Kittas, "Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the opening", Computers and Electronics in Agriculture, Vol. 34, pp. 207-221, 2002. DOI: http://dx.doi.org/10.1016/S0168-1699(01)00188-0
  11. H. Fatnassi, T. Boulard, H. Demrath, L. Bouirden and G. Sappe, "Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets", Biosystems Engineering, Vol. 82, No. 2, pp. 97-105, 2002. DOI: http://dx.doi.org/10.1006/bioe.2001.0056
  12. S. K. Sung, "Heat Emission Characteristics on Natural Convection Radiator with Various Aspect Ratios in Heating Space", Journal of the Korea Academia-Industrial cooperation Society, Vol. 11, No. 1, pp. 37-42, 2010. DOI: http://dx.doi.org/10.5762/KAIS.2010.11.1.037
  13. H. C. Lee and J. U. Cho, "Study of the Shape of Car Body Affecting Flow Resistance of Air Flowing Near Car", Journal of the Korea Academia-Industrial cooperation Society, Vol. 15, No. 8, pp. 4707-4712, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.8.4707