DOI QR코드

DOI QR Code

Characteristics of LDPE resin film depending on RP contents

적인 함유량에 따른 LDPE 수지 film의 특성연구

  • 조동수 (한국건설생활환경시험연구원) ;
  • 노영태 (한국건설생활환경시험연구원) ;
  • 박병선 ((주)한국지러스트)
  • Received : 2015.08.28
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

Due to tightened environmental regulations on halogen type flame retardants, the portions of those based on phosphorous compounds that are non-halogen type is rising. When producing functional film, the physical and thermal properties become distinctly different depending on the amount of Red-phosphorus(RP) addition which causes flame resistance. The physical properties of resin fall in big scale when too much flame retardants are added, and it is hard to be applied to functional films such as shrink or anticorrosive film. The purpose of this research is to study the effects on mechanical, physical, and other properties of RP-LDPE films by changing the RP-MB contents. The LDPE film used for this study was produced through blow-type injection molding. The flame resistance was VTM-0, and the tear resistance showed inverse trends of MD and TD. Contraction percentage showed no relationship with the amount of RP content, but the anti-corrosive property showed 0.05 % better result than the national anti-corrosion shrink film reliability standard.

할로겐계 난연제의 환경적 문제로 인한 규제가 강화되면서 비할로겐타입의 인계화합물을 기초로 한 난연제의 비중이 높아지고 있으며, 기능성 film 제조에 있어 난연 효과를 보이는 적인 첨가에 따라 수지의 물성 및 열적 특성이 확연히 달라진다. 난연 효과를 높이고자 난연제 과량 첨가시 수지의 물성은 크게 저하되며, 수축 또는 방청 등 기능성 film에 적용되기 어렵다. 본 연구에서는 적인MB의 함유량에 따른 LDPE film을 blow 타입의 사출공청을 통해 제조하였고, 이에 대한 난연성 시험과 인열 강도 및 수축률, 방청성 평가를 통해 적인-LDPE film의 기계적 특성 및 물성특성에 미치는 영향력과 함유량에 따른 적인난연 film의 특성연구를 그 목적으로 하였다. 난연성의 경우 VTM 0를 보였으며, 인열 강도의 경우 MD 및 TD의 경향성이 상반되는 것을 알 수 있었다. 수축률의 경우 함유량에 따른 특성은 보이지 않았으며, 방청성의 경우 국내 방청 수축 필름 신뢰성 규격의 기준인 0.05 % 보다 우수한 결과를 보였다.

Keywords

References

  1. M. Modesti, A. Lorenzetti, "Flame retardancy of polyisocyanurate-polyurethane foams: use of different charring agents", Polym. Degrad. Stab., 78, 341, 2002. DOI: http://dx.doi.org/10.1016/S0141-3910(02)00184-2
  2. W. Y. Chen, Y. Z. Wang, F. C. Chang, "Thermal and Flame Retardation Properties of Melamine Phosphate-Modified Epoxy Resins", J. Polym. Res., 11, 109, 2004. DOI: http://dx.doi.org/10.1023/B:JPOL.0000031069.23622.bc
  3. O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, D. A. Knyazkov, and I. V. Rybitskaya, Proceedings of the Combustion Institute, 31, 2741, 2007. DOI: http://dx.doi.org/10.1016/j.proci.2006.07.120
  4. M. Liu, Y. Liu, Q. Wang, "Flame-Retarded Poly(propylene) with Melamine Phosphate and Pentaerythritol/Polyurethane Composite Charring Agent", Macromol. Mater. Eng., 292, 206, 2007. DOI: http://dx.doi.org/10.1002/mame.200600353
  5. L. Song, Y. Hu, Y. Tang, R. Zhang, Z. Chen, W. Fan, "Study on the properties of flame retardant polyurethane/organoclay nanocomposite", Polym. Degrad. Stab., 87, 111, 2005. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.012
  6. F. Siminoi, M. Chechin, M. Modesti, A. Lorenzetti, "Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers", Polym. Degrad. Stab., 74, 475, 2001. DOI: http://dx.doi.org/10.1016/S0141-3910(01)00171-9
  7. Y. Chen, Q. Wang, W. Yan, H. Tang, "Preparation of flame retardant polyamide composite with melamine cyanurate nanoparticles in situ formed in extrusion process", Polym. Degrad. Stab., 91, 2632, 2006. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2006.05.002
  8. B. Y. Jo, S. C. Moon, J. K. Choi, "Effect of Waste Ground Tire Rubber on Flame Retardancy and Foaming Properties of the NBR foams", Elast. Compos., 38, 251, 2003.
  9. U. Braun, B. Schartel, M. A. Fichera, C. Jager, "Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6", Polym. Degrad. Stab., 92, 1528, 2007. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2007.05.007
  10. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, Y. P. Naik, "Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam", J. Appl. Polym. Sci., 110, 2586, 2008. DOI: http://dx.doi.org/10.1002/app.28763
  11. T. M. Jayaweera, C. F. Melius, W. J. Pitz, C. K. Westbrooka, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, I. V. Rybitskaya, and H. J. Curran, "Combustion and Flame", 140, 103 2005. DOI: http://dx.doi.org/10.1016/j.combustflame.2004.11.001
  12. J. G. Uhlmann, J. D. Oelberg, K. D. Sikkema, and R. G. Nelb, "Plastics Additives and Compounding", May/June, 38 1993.
  13. T. Akiyoshi and S. Tamura, European Patent Application 1,055,705 2000.
  14. D. Hoang, J. Kim, and B. N. Jang, Polym. Degrad. Stabil., 93, 2042 2008. DOI: http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.020
  15. G. Kumar and A. Z. Worku, PCT Patent Application WO 00/17268 2000.
  16. Korean Standard Association, KS T 1043, KSA, 2011
  17. Korean Standard Association, KS M ISO 6383-2, 2010
  18. Korean Standard Association, KS M ISO 9773, 2011
  19. KRICT, RS-KRICT-006, 2011.