Abstract
More informative ones of heuristics can help to conduct search more efficiently to obtain solution plan. However, in general, to derive highly informative heuristics from problem specifications requires lots of computational effort. To address this problem, we propose an State-Action based Planning Graph(SAPG) and Action-based heuristics for solving planning problems more efficiently. The SAPG is an extended one to be applied to can find interactions between subgoal & goal conditions from the relaxed planning graph which is a common means to get heuristics for solving the planning problems, Action-based heuristics utilizing SAPG graphs can find interactions between subgoal & goal conditions in an effective way, and then consider them to estimate the goal distance. Therefore Action-based heuristics have more information than the existing max and additive heuristics, also requires less computational effort than the existing overlap heuristics. In this pager. we present the algorithm to compute Action-based heuristics, and then explain empirical analysis to investigate the accuracy and the efficiency of the Action-based heuristics.
정보력이 높은 휴리스틱들은 해 계획을 찾기 위한 탐색을 보다 효율적으로 유도할 수 있다. 하지만 일반적으로, 계획 문제 명세로부터 이러한 정보력이 높은 휴리스틱을 추출하는 것은 매우 많은 계산 노력을 요구한다. 이러한 문제점들에 효과적으로 대처하기 위해서, 본 논문에서는 계획문제로부터 계획 수립을 보다 효율적으로 풀 수 있는 상태-동작 기반 계획 그래프와 동작-기반 휴리스틱을 제안한다. 상태-동작 기반 계획그래프는 계획문제 풀이를 위한 휴리스틱 계산에 이용되는 간략화된 계획그래프를 부속 목표와 목표조건들 간의 상호작용을 찾는데 적용할 수 있도록 확장한 자료구조로써, 상태-동작 기반 계획그래프를 이용하는 동작 기반 휴리스틱은 보다 효과적인 방법으로 부속 목표와 목표조건들 간의 상호작용을 찾아내고, 이들을 목표 도달 거리 계산에 이용한다. 따라서 동작-기반 휴리스틱은 종래의 최대 휴리스틱, 합산 휴리스틱 보다 더 높은 정보력을 가지며 겹침 휴리스틱보다 더 적은 계산 노력을 통해 동일한 결과를 얻을 수 있다. 본 논문에서는 동작-기반 휴리스틱을 계산하는 알고리즘을 제시하고, 동작-기반 휴리스틱의 정확성과 효율성을 알아보기 위한 실험적 분석에 대해 설명한다.