참고문헌
- Aggeler, R., and Capaldi, R.A. (1990). Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclearencoded gene. J. Biol. Chem. 265, 16389-16393.
- Bratic, A., and Larsson, N.G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951-957. https://doi.org/10.1172/JCI64125
- Breitenbach, M., Laun, P., Dickinson, J.R., Klocker, A., Rinnerthaler, M., Dawes, I.W., Aung-Htut, M.T., Breitenbach-Koller, L., Caballero, A., Nystrom, T., et al. (2012). The role of mitochondria in the aging processes of yeast. Subcell. Biochem. 57, 55-78.
- Choi, J.S., and Lee, C.K. (2013). Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem. Biophys. Res. Commun. 439, 126-131. https://doi.org/10.1016/j.bbrc.2013.08.014
- Choi, J.S., Choi, K.M., and Lee, C.K. (2011). Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 409, 308-314. https://doi.org/10.1016/j.bbrc.2011.05.008
- Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013a). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 48, 1455-1468. https://doi.org/10.1016/j.exger.2013.10.001
- Choi, K.M., Lee, H.L., Kwon, Y.Y., Kang, M.S., Lee, S.K., and Lee, C.K. (2013b). Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem. Biophys. Res. Commun. 441, 236-242. https://doi.org/10.1016/j.bbrc.2013.10.049
- Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. 589, 349-357. https://doi.org/10.1016/j.febslet.2014.12.020
- de Grey, A.D. (2005). Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Res. 8, 13-17. https://doi.org/10.1089/rej.2005.8.13
- Demir, A.B., and Koc, A. (2010). Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem. Biophys. Res. Commun. 400, 106-110. https://doi.org/10.1016/j.bbrc.2010.08.019
- Duttaroy, A., Paul, A., Kundu, M., and Belton, A. (2003). A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165, 2295-2299.
- Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P., and Fenn, W.O. (1954). Oxygen poisoning and x-irradiation: a mechanism in common. Science 119, 623-626. https://doi.org/10.1126/science.119.3097.623
- Gomes, F., Tahara, E.B., Busso, C., Kowaltowski, A.J., and Barros, M.H. (2013). nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem. J. 449, 595-603. https://doi.org/10.1042/BJ20121432
- Gralla, E.B., and Kosman, D.J. (1992). Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319. https://doi.org/10.1016/S0065-2660(08)60322-3
- Guelin, E., Chevallier, J., Rigoulet, M., Guerin, B., and Velours, J. (1993). ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J. Biol. Chem. 268, 161-167.
- Hacioglu, E., Demir, A.B., and Koc, A. (2012). Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp. Gerontol. 47, 149-153. https://doi.org/10.1016/j.exger.2011.11.009
- Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
- Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145-147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
- Joseph-Horne, T., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179-195. https://doi.org/10.1016/S0005-2728(00)00251-6
- Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126, 491-504. https://doi.org/10.1016/j.mad.2004.10.007
- Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299-307.
- Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381. https://doi.org/10.1038/ng1295-376
- McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055.
- Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148. https://doi.org/10.1038/191144a0
- Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064-49073. https://doi.org/10.1074/jbc.M407715200
- Norais, N., Prome, D., and Velours, J. (1991). ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J. Biol. Chem. 266, 16541-16549.
- Passos, J.F., von Zglinicki, T., and Saretzki, G. (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res. 9, 64-68. https://doi.org/10.1089/rej.2006.9.64
- Scialo, F., Mallikarjun, V., Stefanatos, R., and Sanz, A. (2013). Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid. Redox Signal. 19, 1953-1969. https://doi.org/10.1089/ars.2012.4900
- Stehr-Green, P.A., Cochi, S.L., Preblud, S.R., and Orenstein, W.A. (1990). Evidence against increasing rubella seronegativity among adolescent girls. Am. J. Public Health 80, 88. https://doi.org/10.2105/AJPH.80.1.88
- Trueblood, C.E., and Poyton, R.O. (1987). Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol. Cell. Biol. 7, 3520-3526. https://doi.org/10.1128/MCB.7.10.3520
- Uh, M., Jones, D., and Mueller, D.M. (1990). The gene coding for the yeast oligomycin sensitivity-conferring protein. J. Biol. Chem. 265, 19047-19052.
- Van Raamsdonk, J.M., and Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5, e1000361. https://doi.org/10.1371/journal.pgen.1000361
- Veatch, J.R., McMurray, M.A., Nelson, Z.W., and Gottschling, D.E. (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247-1258. https://doi.org/10.1016/j.cell.2009.04.014
- Velours, J., Arselin, G., Paul, M.F., Galante, M., Durrens, P., Aigle, M., and Guerin, B. (1989). The yeast ATP synthase subunit 4: structure and function. Biochimie 71, 903-915. https://doi.org/10.1016/0300-9084(89)90073-4
피인용 문헌
- Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast 2018, https://doi.org/10.1093/gerona/glx024
- Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2279
- The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02736-7
- Mitochondria and aging: A role for the mitochondrial transition pore? vol.17, pp.4, 2018, https://doi.org/10.1111/acel.12793
- Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses vol.14, pp.5, 2018, https://doi.org/10.1007/s11306-018-1352-x
- Flavin-based metabolic cycles are integral features of growth and division in single yeast cells vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-35936-w
- Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function vol.401, pp.3, 2015, https://doi.org/10.1515/hsz-2019-0264
- Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function vol.401, pp.3, 2015, https://doi.org/10.1515/hsz-2019-0264
- Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration vol.75, pp.8, 2020, https://doi.org/10.1093/gerona/glz202
- Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys vol.21, pp.1, 2020, https://doi.org/10.1186/s12868-020-0550-4
- Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2004.04073
- A Genome-Wide Screen in Saccharomyces cerevisiae Reveals a Critical Role for Oxidative Phosphorylation in Cellular Tolerance to Lithium Hexafluorophosphate vol.10, pp.4, 2021, https://doi.org/10.3390/cells10040888
- Metabolic energy variation of yeast affects its antioxidant properties in beer brewing vol.1, pp.3, 2015, https://doi.org/10.1007/s43393-021-00027-x
- Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae vol.147, pp.None, 2015, https://doi.org/10.1016/j.lwt.2021.111492
- The mitochondrial copper chaperone COX11 has an additional role in cellular redox homeostasis vol.16, pp.12, 2015, https://doi.org/10.1371/journal.pone.0261465