DOI QR코드

DOI QR Code

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Kyung-Mi (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Cho, ChangYeon (Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Cheol-Koo (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 투고 : 2015.06.02
  • 심사 : 2015.09.03
  • 발행 : 2015.12.31

초록

Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.

키워드

참고문헌

  1. Aggeler, R., and Capaldi, R.A. (1990). Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclearencoded gene. J. Biol. Chem. 265, 16389-16393.
  2. Bratic, A., and Larsson, N.G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951-957. https://doi.org/10.1172/JCI64125
  3. Breitenbach, M., Laun, P., Dickinson, J.R., Klocker, A., Rinnerthaler, M., Dawes, I.W., Aung-Htut, M.T., Breitenbach-Koller, L., Caballero, A., Nystrom, T., et al. (2012). The role of mitochondria in the aging processes of yeast. Subcell. Biochem. 57, 55-78.
  4. Choi, J.S., and Lee, C.K. (2013). Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem. Biophys. Res. Commun. 439, 126-131. https://doi.org/10.1016/j.bbrc.2013.08.014
  5. Choi, J.S., Choi, K.M., and Lee, C.K. (2011). Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 409, 308-314. https://doi.org/10.1016/j.bbrc.2011.05.008
  6. Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013a). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 48, 1455-1468. https://doi.org/10.1016/j.exger.2013.10.001
  7. Choi, K.M., Lee, H.L., Kwon, Y.Y., Kang, M.S., Lee, S.K., and Lee, C.K. (2013b). Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem. Biophys. Res. Commun. 441, 236-242. https://doi.org/10.1016/j.bbrc.2013.10.049
  8. Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. 589, 349-357. https://doi.org/10.1016/j.febslet.2014.12.020
  9. de Grey, A.D. (2005). Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Res. 8, 13-17. https://doi.org/10.1089/rej.2005.8.13
  10. Demir, A.B., and Koc, A. (2010). Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem. Biophys. Res. Commun. 400, 106-110. https://doi.org/10.1016/j.bbrc.2010.08.019
  11. Duttaroy, A., Paul, A., Kundu, M., and Belton, A. (2003). A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165, 2295-2299.
  12. Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P., and Fenn, W.O. (1954). Oxygen poisoning and x-irradiation: a mechanism in common. Science 119, 623-626. https://doi.org/10.1126/science.119.3097.623
  13. Gomes, F., Tahara, E.B., Busso, C., Kowaltowski, A.J., and Barros, M.H. (2013). nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem. J. 449, 595-603. https://doi.org/10.1042/BJ20121432
  14. Gralla, E.B., and Kosman, D.J. (1992). Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319. https://doi.org/10.1016/S0065-2660(08)60322-3
  15. Guelin, E., Chevallier, J., Rigoulet, M., Guerin, B., and Velours, J. (1993). ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J. Biol. Chem. 268, 161-167.
  16. Hacioglu, E., Demir, A.B., and Koc, A. (2012). Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp. Gerontol. 47, 149-153. https://doi.org/10.1016/j.exger.2011.11.009
  17. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
  18. Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145-147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x
  19. Joseph-Horne, T., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179-195. https://doi.org/10.1016/S0005-2728(00)00251-6
  20. Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126, 491-504. https://doi.org/10.1016/j.mad.2004.10.007
  21. Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299-307.
  22. Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381. https://doi.org/10.1038/ng1295-376
  23. McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055.
  24. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148. https://doi.org/10.1038/191144a0
  25. Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064-49073. https://doi.org/10.1074/jbc.M407715200
  26. Norais, N., Prome, D., and Velours, J. (1991). ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J. Biol. Chem. 266, 16541-16549.
  27. Passos, J.F., von Zglinicki, T., and Saretzki, G. (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res. 9, 64-68. https://doi.org/10.1089/rej.2006.9.64
  28. Scialo, F., Mallikarjun, V., Stefanatos, R., and Sanz, A. (2013). Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid. Redox Signal. 19, 1953-1969. https://doi.org/10.1089/ars.2012.4900
  29. Stehr-Green, P.A., Cochi, S.L., Preblud, S.R., and Orenstein, W.A. (1990). Evidence against increasing rubella seronegativity among adolescent girls. Am. J. Public Health 80, 88. https://doi.org/10.2105/AJPH.80.1.88
  30. Trueblood, C.E., and Poyton, R.O. (1987). Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol. Cell. Biol. 7, 3520-3526. https://doi.org/10.1128/MCB.7.10.3520
  31. Uh, M., Jones, D., and Mueller, D.M. (1990). The gene coding for the yeast oligomycin sensitivity-conferring protein. J. Biol. Chem. 265, 19047-19052.
  32. Van Raamsdonk, J.M., and Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5, e1000361. https://doi.org/10.1371/journal.pgen.1000361
  33. Veatch, J.R., McMurray, M.A., Nelson, Z.W., and Gottschling, D.E. (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247-1258. https://doi.org/10.1016/j.cell.2009.04.014
  34. Velours, J., Arselin, G., Paul, M.F., Galante, M., Durrens, P., Aigle, M., and Guerin, B. (1989). The yeast ATP synthase subunit 4: structure and function. Biochimie 71, 903-915. https://doi.org/10.1016/0300-9084(89)90073-4

피인용 문헌

  1. Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast 2018, https://doi.org/10.1093/gerona/glx024
  2. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast vol.40, pp.4, 2017, https://doi.org/10.14348/molcells.2017.2279
  3. The role of flavin-containing enzymes in mitochondrial membrane hyperpolarization and ROS production in respiring Saccharomyces cerevisiae cells under heat-shock conditions vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02736-7
  4. Mitochondria and aging: A role for the mitochondrial transition pore? vol.17, pp.4, 2018, https://doi.org/10.1111/acel.12793
  5. Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses vol.14, pp.5, 2018, https://doi.org/10.1007/s11306-018-1352-x
  6. Flavin-based metabolic cycles are integral features of growth and division in single yeast cells vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-35936-w
  7. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function vol.401, pp.3, 2015, https://doi.org/10.1515/hsz-2019-0264
  8. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function vol.401, pp.3, 2015, https://doi.org/10.1515/hsz-2019-0264
  9. Long-Living Budding Yeast Cell Subpopulation Induced by Ethanol/Acetate and Respiration vol.75, pp.8, 2020, https://doi.org/10.1093/gerona/glz202
  10. Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys vol.21, pp.1, 2020, https://doi.org/10.1186/s12868-020-0550-4
  11. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2004.04073
  12. A Genome-Wide Screen in Saccharomyces cerevisiae Reveals a Critical Role for Oxidative Phosphorylation in Cellular Tolerance to Lithium Hexafluorophosphate vol.10, pp.4, 2021, https://doi.org/10.3390/cells10040888
  13. Metabolic energy variation of yeast affects its antioxidant properties in beer brewing vol.1, pp.3, 2015, https://doi.org/10.1007/s43393-021-00027-x
  14. Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae vol.147, pp.None, 2015, https://doi.org/10.1016/j.lwt.2021.111492
  15. The mitochondrial copper chaperone COX11 has an additional role in cellular redox homeostasis vol.16, pp.12, 2015, https://doi.org/10.1371/journal.pone.0261465