DOI QR코드

DOI QR Code

Structural and Optical Properties of ITZO Deposited by RF Magnetron Sputtering

RF 마그네트론 스퍼터링 법으로 제작한 ITZO 박막의 구조 및 광학적 특성

  • Kim, Dong Ryeol (Department of Materials Science and Engineering, Pusan National University) ;
  • Bae, Ji Hwan (Department of Materials Science and Engineering, Pusan National University) ;
  • Hwang, Dong Hyun (Department of Materials Science and Engineering, Silla University) ;
  • Son, Young Guk (Department of Materials Science and Engineering, Pusan National University)
  • 김동렬 (부산대학교 재료공학부) ;
  • 배지환 (부산대학교 재료공학부) ;
  • 황동현 (신라대학교 신소재공학과) ;
  • 손영국 (부산대학교 재료공학부)
  • Received : 2015.11.30
  • Accepted : 2015.12.29
  • Published : 2015.12.31

Abstract

Indium tin zinc oxide (ITZO) thin films were deposited on glass and quartz substrates by RF magnetron sputtering. The substrate temperature varied from $100^{\circ}C$ to $400^{\circ}C$. The structural and optical properties of thin films were investigated by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM) and UV-Visible transmission spectra. It has been found from X-ray diffraction patterns that increasing the substrate temperature, the amorphous structure changes into polycrystalline structure. The FESEM results showed that all ITZO thin films have a smooth surface. The average optical transmittance (400 - 800 nm) was 82% and 80% at all films deposited at $200^{\circ}C$. The band gap energy ranges 3.41 to 3.57eV and 2.81 to 3.44eV with a maximum value at $200^{\circ}C$ all substrates temperature.

Keywords

References

  1. J. W. Seo, Y. H. Joung, S. J. Kang ; J. Kor Inst. Inf. Commun. Eng., 17 (2013) 1874.
  2. Y. S. Kim, W. J. Hwang, K. T. Eun, S. H. Choa ; Appl. Surf. Scie., 257 (2011) 8134. https://doi.org/10.1016/j.apsusc.2011.04.123
  3. S. H. Kwon, Y. M. Kang, Y. R. Cho, S. H. Kim, P. K. Song ; Surf. Coat. Technol., 205 (2010) 312. https://doi.org/10.1016/j.surfcoat.2010.06.049
  4. S. Tomai, H. Hayasaka, M. Sunagawa, E. Kawashima, S. Ishii, M. Nishimura, M. Kasami, K. Yano, D. Wang, M. Furuta ; Electrochem. Solid State Lett., 12 (2013) 107.
  5. M. H. Kim, H. S. Lee ; Solid State Elec., 96 (2014) 14. https://doi.org/10.1016/j.sse.2014.04.021
  6. S. Y. Lee, Y. R. Denny, K. I. Lee, N. S. Park, H. J. Kang ; New Physics: Sae Mulli, 6 (63) (2013) 675.
  7. H. Koseoglu, F. Turkoglu, M. Kurt, M. D. Yaman, F. G. Akca, G. Aygun, L. Ozyuzer ; Vacuum 120 (2015) 8. https://doi.org/10.1016/j.vacuum.2015.06.027
  8. S. S. Lee, N. R. Lee, K. I. Kim, T. W. Hong ; Clean Tech., 18 (2012) 69. https://doi.org/10.7464/ksct.2012.18.1.069
  9. S. H. Kim, D. I. Kim ; Cera. Int., 41 (2015) 2771.
  10. H. C. Cheng, C. Y. Tsay ; J. Alloys and Comp., 507 (2010) L1. https://doi.org/10.1016/j.jallcom.2010.06.166
  11. D. M. Lee, J. K. Kim, J. C. Hao, H. K. Kim, J. S. Yoon, J. M. Lee ; J. Alloys and Comp., 583 (2014) 535. https://doi.org/10.1016/j.jallcom.2013.09.008
  12. B. Z. Zhang, Z. Y. Wu, Y. D. Tao ; Cera. Int., 40 (2014) 7842.
  13. Z. S. Hosseini, A. Mortezaali, A. Lraji zad ; Sensors And Actuators A 212 (2014) 81.
  14. Teresa Oh ; Kor. J. Mater. Res., 23 (2013) 582
  15. K. C. Lee, K. M. Jo, J. H. Lee, J. J. Kim, Y. W. Heo ; J. Kor. Inst. Surf. Eng., 47 (2014) 239. https://doi.org/10.5695/JKISE.2014.47.5.239
  16. B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, 1978) p. 102.
  17. D. H. Hwang, J. H. Ahn, Y. K. Son ; J. KIEEME 24 (2011) 764.
  18. M. Nisha, S. Anusha, Aldrin Antony, R. Manoj, M. K. Jayataj ; Appli. Surf. Scie. 252 (2005) 1433.