DOI QR코드

DOI QR Code

Effect of firing temperatures on alkali activated Geopolymer mortar doped with MWCNT

  • Khater, H.M. (Housing and Building National Research Centre (HBNRC)) ;
  • Gawwad, H.A. Abd El (Housing and Building National Research Centre (HBNRC))
  • Received : 2015.07.08
  • Accepted : 2015.12.29
  • Published : 2015.12.25

Abstract

The current investigation aims to study performance of geopolymer mortar reinforced with Multiwalled carbon nanotubes upon exposure to $200^{\circ}C$ to $1000^{\circ}C$ for 2 hrs. MWCNTs are doped into slag Geopolymer mortar matrices in the ratio of 0.0 to 0.4, % by weight of binder. Mortar composed of calcium aluminosilicate to sand (1:2), however, binder composed of 50% air cooled slag and 50% water cooled slag. Various water / binder ratios in the range of 0.114-0.129 used depending on the added MWCNT, while 6 wt., % sodium hydroxide used as an alkali activator. Results illustrate reduction in mechanical strength with temperature except specimens containing 0.1 and 0.2% MWCNT at $200^{\circ}C$, while further increase in temperature leads to decrease in strength values of the resulting geopolymer mortar. Also, decrease in firing shrinkage with MWCNT up to 0.1% at all firing temperatures up to $500^{\circ}C$ is observed, however the shrinkage values increase with temperature up to $500^{\circ}C$. Further increase on the firing temperature up to $1000^{\circ}C$ results in an increase in the volume due to expansion.

Keywords

References

  1. ASTM C109M-12 (2012), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
  2. Bakharev, T. (2004), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-70. https://doi.org/10.1016/j.cemconres.2004.06.005
  3. Bakharev, T. (2006), "Thermal behavior of geopolymer prepared using class F fly ash and elected temperature curing", Cement Concrete Res., 36,1134-1147. https://doi.org/10.1016/j.cemconres.2006.03.022
  4. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29, 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
  5. Ben Haha, M., Le Saout, G., Winnefeld, F. and Lothenbach, B. (2011), "Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags", Cement Concrete Res., 41(3), 301-10. https://doi.org/10.1016/j.cemconres.2010.11.016
  6. Ben Haha, M., Lothenbach, B., Le Saout, G. and Winnefeld, F. (2011), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part I: effect of MgO", Cement Concrete Res., 41(9), 955-63. https://doi.org/10.1016/j.cemconres.2011.05.002
  7. Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Gordillo, M. and Provis, J.L. (2011), "Mechanical and thermal characterization of geopolymers based on silicate activated metakaolin/slag blends", J. Mater. Sci., 46(16), 5477-86. https://doi.org/10.1007/s10853-011-5490-z
  8. Bernal, S.A., Rodriguez, E.D., de Gutierrez, R.M., Provis, J.L. and Delvasto, S. (2012), "Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash", Waste Biomass Valor, 3, 99-108. https://doi.org/10.1007/s12649-011-9093-3
  9. Bi, S., Su, X., Hou, G., Liu, C., Song, W.L. and Cao, M.S. (2013), "Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina/ceramic composites", Ceram Int., 39(5), 5979-83. https://doi.org/10.1016/j.ceramint.2012.12.057
  10. Chen, S.J., Collins, F.G., Macleod, A.J.N., Pan, Z., Duan, W.H. and Wang, C.M. (2011), "Carbon nanotube-cement: a retrospect", ISE J. Part A: Civil Struct. Eng., 4(4), 254-65. https://doi.org/10.1080/19373260.2011.615474
  11. Chen, J. and Poon, C. (2009), "Photocatalytic construction and building materials: From fundamentals to applications", Build. Envir., 44(9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002
  12. Chukanov, N. (2014), Infrared spectra of mineral species, Springer.
  13. Chung, D.D.L. (2001), "Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials", Carbon., 39(8), 1119-25. https://doi.org/10.1016/S0008-6223(00)00314-6
  14. Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion,workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-74. https://doi.org/10.1016/j.cemconcomp.2012.06.007
  15. de Vargas, A.S., Dal Molin, D.C., Masuero, A.B., Vilela, A.C., Castro-Gomes, J. and de Gutierrez, R.M. (2014), "Strength development of alkali-activated fly ash produced with combined NAOH and $CA(OH)_2$ activators", Cement Concrete Compos., 53, 341-349. https://doi.org/10.1016/j.cemconcomp.2014.06.012
  16. Duxson, P., Lukey, G.C. and van Deventer, J.S.J. (2007), "The thermal evolution of metakaolin geopolymers: Part 2-phase stability and structural development", J. Non-Cryst .Solid., 353, 2186-200. https://doi.org/10.1016/j.jnoncrysol.2007.02.050
  17. El-Sayed, H.A., Abo El-Enein, S.A., Khater, H.M. and Hasanein, S.A. (2011), "Resistance of alkali activated water cooled slag geopolymer to sulfate attack", Ceramics-Silikaty, 55, 153-160.
  18. Fakhru'l-Razi, A., Atieh, M.A., Girun, N., Chuah, T.G., El-Sadig, M. and Biak, D.R.A. (2006), "Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber", Compos. Struct., 75(1-4), 496-500. https://doi.org/10.1016/j.compstruct.2006.04.035
  19. Fu, K., Huang, W. and Lin, Y. (2001), "Defunctionalization of functionalized carbon nanotubes", Nano Lett., 1(8), 439-441. https://doi.org/10.1021/nl010040g
  20. Gao, D., Sturm, M. and Mo, Y. (2009), "Electrical resistance of carbon-nanofiber concrete", Smart Mater. Struct., 18, 095039. https://doi.org/10.1088/0964-1726/18/9/095039
  21. Gay, C. and Sanchez, F. (2010), "Performance of carbon nanofiber-cement composites with a high-range water reducer", Transp. Res. Rec., J. Tran. Res. Board., 2142, 109-13. https://doi.org/10.3141/2142-16
  22. Hamon, M.A., Hui, H. and Bhowmik, P. (2002), "Ester-functionalized soluble single-walled carbon nanotubes", Appl. Phys. A., 74(3), 333-338.
  23. Han, B., Yu, X. and Ou, J. (2011), Multifunctional and smart carbon nanotube reinforced cement-based materials, Nanotechnology in Civil Infrastructure, Springer.
  24. Han, B., Yang, Z. and Shi, X. (2013), "Transport properties of carbon-nanotube/cement composites", J. Mater. Eng. Perform., 22(1), 184-189. https://doi.org/10.1007/s11665-012-0228-x
  25. Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L. and Emmanuel Flahaut, E. (2010), "Higher dispersion efficacy of functionalized carbon nanotubes inchemical and biological environments", ACS Nano, 4(5), 2615-26. https://doi.org/10.1021/nn100069k
  26. Huang, S. (2012), "Multifunctional graphite nanoplatelets (GNP) reinforced cementitious composites", Dissertation for the Degree of Master of Engineering, National University of Singapore, Singapore.
  27. Jiang, X., Kowald, T., Staedler, T. and Trettin, R. (2005), "Carbon nanotubes as a new reinforcement material for modern cement-based binders", RILEM Proceedings, 2nd International Symposium on Nanotechnology in Construction, 209-213.
  28. Khalili, S.M.R. and Haghbin, A. (2013), "Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads", Compos. Struct., 98, 253-60. https://doi.org/10.1016/j.compstruct.2012.09.049
  29. Kim, H.K., Nam, I.W. and Lee, H.K. (2012), "Microstructure and mechanical/EMI shielding characteristics of CNT/cement composites with various silica fume contents", UKC 2012 on Science, Technology, and Entrepreneurship, California, USA, August.
  30. Kong, D.L.Y. and Sanjayan, J.G. (2008), "Damage behaviour of geopolymer composites exposed to elevated temperatures", Cement Concrete Compos., 30(10), 986-91. https://doi.org/10.1016/j.cemconcomp.2008.08.001
  31. Konsta-Gdoutos, M.S, Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotubes reinforced cement based materials", Cement Concrete Res., 40(7), 1052-9. https://doi.org/10.1016/j.cemconres.2010.02.015
  32. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites", Cement Concrete Compos., 32(2), 110-5. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  33. Laurenzi, S., Pastore, R., Giannini, G. and Marchetti, M. (2013), "Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy", Compos. Struct., 99, 62-8. https://doi.org/10.1016/j.compstruct.2012.12.002
  34. Li, G., Wang, P. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  35. Ma, P.C., Siddiqui, N.A. and Marom, G. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  36. Makar, J., Margeson, J. and Luh, J. (2005), "Carbon nanotube/cement composites-early results and potential applications", 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, August.
  37. Mukhopadhyay, A.K. (2011), Next-generation nano-based concrete construction products: a review, Nanotechnology in Civil Infrastructure, Springer Berlin Heidelberg.
  38. Nam, I.W., Kim, H.K. and Lee, H.K. (2010), "Investigation of high-strength and electromagnetic wave shielding properties of a mortar incorporating carbon nanotube (CNT)", IV European conference on computational mechanics (ECCM IV), Paris, France, May.
  39. Norsker, H. (1987), The Self-reliant potter: refractories and kilns, Vieweg&Sohn, Friedr, Braunschweig/ Wiesbaden.
  40. Pacheco-Torgal, F., Domingos, M., Ding, Y. and Jalali, S. (2011), "Composition, strength and workability of alkali-activated metakaolin based mortars", Construct. Build. Mater., 25, 3732-3745. https://doi.org/10.1016/j.conbuildmat.2011.04.017
  41. Pan, Z., Sanjayan, J.G. and Rangan, V. (2011), "Fracture properties of geopolymer paste and concrete", Mag. Concrete Res., 63(10), 763-71. https://doi.org/10.1680/macr.2011.63.10.763
  42. Panias, D., Giannopoulou, I.P. and Perraki, T. (2007), "Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers", Coll. Surf. A: Physicochem. Eng. Aspect., 301, 246-254. https://doi.org/10.1016/j.colsurfa.2006.12.064
  43. Parveen, S., Rana, S. and Fangueiro, R. (2013), "A review on nanomaterial dispersion, microstructure and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites", J. Nanomater., Article No. 80, 71017580.
  44. Raki, L., Beaudoin, J. and Alizadeh, R. (2010), "Cement and concrete nanoscience and nanotechnology", Mater., 3(2), 918-942. https://doi.org/10.3390/ma3020918
  45. Reich, S., Thomsen, C. and Maultzsch, J. (2004), Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Germany.
  46. Walters, D.A. (1999), "Elastic strain of freely suspended single-wall carbon nanotube ropes", Appl. Phys. Lett., 74, 3803-5. https://doi.org/10.1063/1.124185
  47. Saikia, N., Usami, A., Kato, S. and Kojima, T. (2004), "Hydration behavior of ecocement in presence of metakaolin", Res. Prog. J., 51, 35-41.
  48. Sanchez, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69(7-8), 1310-8. https://doi.org/10.1016/j.compscitech.2009.03.006
  49. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete-a review", Construct. Build. Mater., 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  50. Shah, S.P., Konsta-Gdoutos, M.S. and Metaxa, Z.S. (2011), Advanced Cement Based Nanocomposites, Recent Advances in Mechanics, Springer.
  51. Sobolev, K. and Gutierrez, M.F. (2005), "How nanotechnology can change the concrete world", Am. Ceram. Soc. Bull., 84(10), 14-18.
  52. Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I. and Volkmer, C. (2010), "Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites", Compos. Sci. Technol., 70(16), 2253-7. https://doi.org/10.1016/j.compscitech.2010.07.012
  53. Ugheoke, B.I., Onche, E.O., Namessan, O.N. and Asikpo, G.A. (2006), "Property optimization of kaolin-rice husk insulating fire-bricks", Leonardo Electronic Journal of Practices and Technologies, Issue 9, July-December.
  54. Weitzel, B., Hansen, M.R., Kowald, T.L., Muller, T., Spiess, H.W. and Trettin, H.F.R. (2011), "Influence of multiwalled carbon nanotubes on the microstructure of CSH-phases", Proceeding of 13th Congress on the Chemistry of Cement, Madrid, Spain, July.
  55. Wenying, G., Guolin, W., Jianda, W., Ziyun, W. and Suhong, Y. (2008), "Preparation and performance of geopolymers", J. Wuhan Univ. Tech.-Mater. Sci. Ed., 23(3), 326-330. https://doi.org/10.1007/s11595-007-3326-0
  56. Xie, X., Mai, Y. and Zhou, X. (2005), "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Mater. Sci. Eng. R: Report., 49(4), 89-112. https://doi.org/10.1016/j.mser.2005.04.002
  57. Yu, X. and Kwon, E. (2009), "A carbon nanotube/cement composite with piezoresistive properties", Smart Mater. Struct., 18(5), 1-5.

Cited by

  1. Preparation of sustainable of eco-friendly MWCNT-geopolymer composites with superior sulfate resistance vol.3, pp.3, 2015, https://doi.org/10.1007/s42114-020-00170-4
  2. Prospects for the use of waste cement industry in the production of clinker-free concrete vol.1926, pp.1, 2021, https://doi.org/10.1088/1742-6596/1926/1/012012
  3. Industrial experience in the implementation of clinker-free binders of alkaline activation vol.48, pp.3, 2015, https://doi.org/10.21822/2073-6185-2021-48-3-106-116