DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Received : 2014.06.25
  • Accepted : 2014.07.31
  • Published : 2015.01.01

Abstract

Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

Keywords

References

  1. Alderton, W. K., Cooper, C. E. and Knowles, R. G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593-615. https://doi.org/10.1042/bj3570593
  2. Babich, H. and Babich, J. P. (1997) Sodium lauryl sulfate and triclosan: in vitro cytotoxicity studies with gingival cells. Toxicol. Lett. 91, 189-196. https://doi.org/10.1016/S0378-4274(97)00022-2
  3. Baumann, H. and Gauldie, J. (1994) The acute phase response. Immunol. Today 15, 74-80. https://doi.org/10.1016/0167-5699(94)90137-6
  4. Chuang, C. Y., Liu, H. C., Wu, L. C., Chen, C. Y., Chang, J. T. and Hsu, S. L. (2010) Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutatedp53 activation pathway. J. Agric. Food Chem. 58, 2943-2951. https://doi.org/10.1021/jf9043265
  5. Dokka, S., Shi, X., Leonard, S., Wang, L., Castranova, V. and Rojanasakul, Y. (2001) Interleukin-10-mediated inhibition of free radical generation in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L1196-1202. https://doi.org/10.1152/ajplung.2001.280.6.L1196
  6. Froebe, C. L., Simion, F. A., Rhein, L. D., Cagan, R. H. and Kligman, A. (1990) Stratum corneum lipid removal by surfactants: relation to in vivo irritation. Dermatologica 181, 277-283. https://doi.org/10.1159/000247822
  7. Gutowska-Owsiak, D. and Ogg, G. S. (2013) Cytokine regulation of the epidermal barrier. Clin. Exp. Allergy 43, 586-598.
  8. Hoque, A. and Arima, S. (2002) Overcoming phenolic accumulation during callus induction and in vitro organogenesis in water chestnut (Trapa Japonica Flerov). In Vitro Cell. Dev. Biol. Plant 38, 342-346. https://doi.org/10.1079/IVP2002305
  9. Johar, D., Roth, J. C., Bay, G. H., Walker, J. N., Kroczak, T. J. and Los, M. (2004) Inflammatory response, reactive oxygen species, programmed (necrotic-like and apoptotic) cell death and cancer. Rocz. Akad. Med. Bialymst. 49, 31-39.
  10. Kang, O. H., Chae, H. S., Choi, J. G., Oh, Y. C., Lee, Y. S., Kim, J. H., Seung, M. J., Jang, H. J., Bae, K. H., Lee, J. H., Shin, D. W. and Kwon, D. Y. (2008) Ent-pimara-8(14), 15-dien-19-oic acid isolated from the roots of Aralia cordata inhibits induction of inflammatory mediators by blocking NF-kappaB activation and mitogen-activated protein kinase pathways. Eur. J. Pharmacol. 601, 179-185. https://doi.org/10.1016/j.ejphar.2008.10.012
  11. Kroes, B. H., van den Berg, A. J., van Ufford, H. C. Q., van Dijk, H. and Labadie, R. P. (1992) Anti-inflammatory activity of gallic acid. Planta Med. 58, 499-504. https://doi.org/10.1055/s-2006-961535
  12. Kumar, K. J., Vani, M. G., Wang, S. Y., Liao, J. W., Hsu, L. S., Yang, H. L. and Hseu, Y. C. (2013) In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 39, 259-270. https://doi.org/10.1002/biof.1064
  13. Kwon, H, S., Park, J. H., Kim, D. H., Kim, Y. H., Shin, H. K. and Kim, J. K. (2008) Licochalcone A isolated from licorice suppresses lipopolysaccharide- stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J. Mol. Med. 86, 1287-1295. https://doi.org/10.1007/s00109-008-0395-2
  14. Latorre, D., Puddu, P., Valenti, P. and Gessani, S. (2010) Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins 2, 54-68. https://doi.org/10.3390/toxins2010054
  15. Lee, C. H and Maibach, H. I. (1995) The sodium lauryl sulfate model: an overview. Contact Dermatitis 33, 1-7. https://doi.org/10.1111/j.1600-0536.1995.tb00438.x
  16. Makarov, S. S. (2000) NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6, 441-448. https://doi.org/10.1016/S1357-4310(00)01814-1
  17. Mariathasan, S. and Monack, D. M. (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31-40. https://doi.org/10.1038/nri1997
  18. Murakami, A. and Ohigashi, H. (2007) Targeting NOX, iNOS and COX- 2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121, 2357-2363. https://doi.org/10.1002/ijc.23161
  19. Mosser, D. M. and Edwards, J. P. (2008) Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958-969. https://doi.org/10.1038/nri2448
  20. Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P. and Beschin, A. (2004) Alternatively activated macrophages during parasite infections. Trends Parasitol. 20, 126-133. https://doi.org/10.1016/j.pt.2004.01.004
  21. Oppenheim, J. J., Zachariae, C. O., Mukaida, N. and Matsushima, K. (1991) Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu. Rev. Immunol. 9, 617-648. https://doi.org/10.1146/annurev.iy.09.040191.003153
  22. Sawada, E., Yoshida, N., Sugiura, A. and Imokawa, G. (2012) Th1 cytokines accentuate but Th2 cytokines attenuate ceramide production in the stratum corneum of human epidermal equivalents: an implication for the disrupted barrier mechanism in atopic dermatitis. J. Dermatol. Sci. 68, 25-35. https://doi.org/10.1016/j.jdermsci.2012.07.004
  23. Schall, T. J. (1991) Biology of the RANTES/SIS cytokine family. Cytokine 3, 165-183. https://doi.org/10.1016/1043-4666(91)90013-4
  24. Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C. and Wu, Y. J. (2013) Inhibition of melanogenesis by gallic acid: possible involvment of the PI3K/Akt, MEK/ ERK and Wnt/b-Catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci. 14, 20443-20458. https://doi.org/10.3390/ijms141020443
  25. Van Snick, J. (1990) Interleukin-6: an overview. Annu. Rev. Immunol. 8, 253-278. https://doi.org/10.1146/annurev.iy.08.040190.001345
  26. Wang, C. C., Choy, C. S., Liu, Y. H., Cheah, K. P., Li, J. S., Wang, J. T., Yu, W. Y., Lin, C. W., Cheng, H. W. and Hu, C. M. (2011) Protective effect of dried safflower petal aqueous extract and its main constituent, carthamus yellow, against lipopolysaccharide-induced inflammation in RAW264.7 macrophages. J. Sci. Food Agric. 91, 218-225. https://doi.org/10.1002/jsfa.4172
  27. Yamamoto, Y. and Gaynor, R. B. (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr. Mol. Med. 1, 287-296. https://doi.org/10.2174/1566524013363816
  28. Yoon, W. J., Ham, Y. M., Kim, S. S., Yoo, B. B., Moon, J. Y., Baik, J. S., Lee, N. H. and Hyun, C. G. (2009) Suppression of pro-inflammatory cytokines, iNOS, and COX-2 expression by brown algae Sargassum micracanthum in RAW 264.7 macrophages. EurAsia. J. Biosci. 3, 130-143.
  29. You, Y., Duan, X., Wei, X., Su, X., Zhao, M., Sun, J., Ruenroengklin, N. and Jiang, Y. (2007) Identification of major phenolic compounds of Chinese water chestnut and their antioxidant activity. Molecules 12, 842-852. https://doi.org/10.3390/12040842
  30. Zedler, S. and Faist, E. (2006) The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 12, 595-601. https://doi.org/10.1097/MCC.0b013e3280106806

Cited by

  1. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101411
  2. In Vitroantioxidative and anti-inflammatory activities of the ethanol extract of eggplant (Solanum melongena)stalks in macrophage RAW 264.7 cells vol.27, pp.6, 2016, https://doi.org/10.1080/09540105.2016.1150427
  3. Aloin Inhibits Interleukin (IL)-1β−Stimulated IL-8 Production in KB Cells vol.87, pp.6, 2016, https://doi.org/10.1902/jop.2016.150447
  4. Chemical composition, health effects, and uses of water caltrop vol.49, 2016, https://doi.org/10.1016/j.tifs.2016.01.009
  5. Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.04.001
  6. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases—Promises, Perspectives, and Pitfalls vol.2016, 2016, https://doi.org/10.1155/2016/9346470
  7. Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation vol.65, pp.2, 2017, https://doi.org/10.1021/acs.jafc.6b05147
  8. Methanol Extract in Its Anti-Inflammatory Action vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/3909038
  9. Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1 vol.46, pp.02, 2018, https://doi.org/10.1142/S0192415X18500222
  10. Stability of Principal Hydrolysable Tannins from Trapa taiwanensis Hulls vol.24, pp.2, 2019, https://doi.org/10.3390/molecules24020365
  11. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.8165
  12. Trichosanthes tricuspidata Lour. Methanol Extract Exhibits Anti-Inflammatory Activity by Targeting Syk, Src, and IRAK1 Kinase Activity vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6879346
  13. 능실 열매의 부위별 추출물 및 캘러스배양 추출물의 항산화, 항염증 효과 연구 vol.36, pp.4, 2019, https://doi.org/10.12925/jkocs.2019.36.4.1485
  14. Sorbaria kirilowii Ethanol Extract Exerts Anti-Inflammatory Effects In Vitro and In Vivo by Targeting Src/Nuclear Factor (NF)-κB vol.10, pp.5, 2015, https://doi.org/10.3390/biom10050741