DOI QR코드

DOI QR Code

Genistein from Vigna angularis Extends Lifespan in Caenorhabditis elegans

  • Received : 2014.06.18
  • Accepted : 2014.09.04
  • Published : 2015.01.01

Abstract

The seed of Vigna angularis has long been cultivated as a food or a folk medicine in East Asia. Genistein (4',5,7-trihydroxyisoflavone), a dietary phytoestrogen present in this plant, has been known to possess various biological properties. In this study, we investigated the possible lifespan-extending effects of genistein using Caenorhabditis elegans model system. We found that the lifespan of nematode was significantly prolonged in the presence of genistein under normal culture condition. In addition, genistein elevated the survival rate of nematode against stressful environment including heat and oxidative conditions. Further studies demonstrated that genistein-mediated increased stress tolerance of nematode could be attributed to enhanced expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). Moreover, we failed to find genistein-induced significant change in aging-related factors including reproduction, food intake, and growth, indicating genistein exerts longevity activity independent of affecting these factors. Genistein treatment also led to an up-regulation of locomotory ability of aged nematode, suggesting genistein affects healthspan as well as lifespan of nematode. Our results represent that genistein has beneficial effects on the lifespan of C. elegans under both of normal and stress condition via elevating expressions of stress resistance proteins.

Keywords

References

  1. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Altun, D., Uysal, H., Askin, H. and Ayar, A. (2011) Determination of the effects of genistein on the longevity of Drosophila melanogaster meigen (Diptera; Drosophilidae). Bull. Environ. Contam. Toxicol. 86, 120-123. https://doi.org/10.1007/s00128-010-0159-x
  3. Behloul, N. and Wu, G. (2013) Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol. 698, 31-38. https://doi.org/10.1016/j.ejphar.2012.11.013
  4. Bordone, L. and Guarente, L. (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298-305. https://doi.org/10.1038/nrm1616
  5. Borras, C., Gambini, J., Gomez-Cabrera, M. C., Sastre, J., Pallardo, F. V., Mann, G. E. and Vina, J. (2005) 17beta-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell 4, 113-118. https://doi.org/10.1111/j.1474-9726.2005.00151.x
  6. Borras, C., Gambini, J., Gomez-Cabrera, M. C., Sastre, J., Pallardo, F. V., Mann, G. E. and Vina, J. (2006) Genistein, a soy isoflavone, upregulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J. 20, 2136-2138. https://doi.org/10.1096/fj.05-5522fje
  7. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
  8. Crozier, A., Jaganath, I. B. and Clifford, M. N. (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001-1043. https://doi.org/10.1039/b802662a
  9. Ding, W. and Liu, Y. (2011) Genistein attenuates genioglossus muscle fatigue under chronic intermittent hypoxia by down-regulation of oxidative stress level and up-regulation of antioxidant enzyme activity through ERK1/2 signaling pathway. Oral Dis. 17, 677-684. https://doi.org/10.1111/j.1601-0825.2011.01822.x
  10. Fan, Y. J., Rong, Y., Li, P. F., Dong, W. L., Zhang, D. Y., Zhang, L. and Cui, M. J. (2013) Genistein protection against acetaminopheninduced liver injury via its potential impact on the activation of UDPglucuronosyltransferase and antioxidant enzymes. Food Chem. Toxicol. 55, 172-181. https://doi.org/10.1016/j.fct.2013.01.003
  11. Gong, D. K., Liu, B. H. and Tan, X. H. (2014) Genistein prevents cadmium- induced neurotoxic effects through its antioxidant mechanisms. Drug Res. (Stuttg). [Epub ahead of print]
  12. Herndon, L. A., Schmeissner, P. J., Dudaronek, J. M., Brown, P. A., Listner, K. M., Sakano, Y., Paupard, M. C., Hall, D. H. and Driscoll, M. (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814. https://doi.org/10.1038/nature01135
  13. Itoh, T., Nakamura, M., Nakamichi, H., Ando, M., Tsukamasa, Y. and Furuichi, Y. (2014) Regulation of the differentiation of osteoblasts and osteoclasts by a hot-water extract of adzuki beans (Vigna angularis). Biosci. Biotechnol. Biochem. 78, 92-99. https://doi.org/10.1080/09168451.2014.877182
  14. Javanbakht, M. H., Sadria, R., Djalali, M., Derakhshanian, H., Hosseinzadeh, P., Zarei, M., Azizi, G., Sedaghat, R. and Mirshafiey, A. (2014) Soy protein and genistein improves renal antioxidant status in experimental nephrotic syndrome. Nefrologia 34, 483-490.
  15. Jefferson, W. N., Patisaul, H. B. and Williams, C. J. (2012) Reproductive consequences of developmental phytoestrogen exposure. Reproduction 143, 247-260. https://doi.org/10.1530/REP-11-0369
  16. Kampkotter, A., Gombitang Nkwonkam, C., Zurawski, R. F., Timpel, C., Chovolou, Y., Watjen, W. and Kahl, R. (2007) Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol. 81, 849-858. https://doi.org/10.1007/s00204-007-0215-4
  17. Kenyon, C. J. (2010) The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
  18. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328, 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  19. Lee, J. S. (2006) Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci. 79, 1578-1584. https://doi.org/10.1016/j.lfs.2006.06.030
  20. Lee, S. H., Lee, J. H., Asahara, T., Kim, Y. S., Jeong, H. C., Ahn, Y., Jung, J. S. and Kwon, S. M. (2014) Genistein promotes endothelial colony-forming cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction. PLoS One 9, e96155. https://doi.org/10.1371/journal.pone.0096155
  21. Lin, X., Zhang, S., Huang, R., Wei, L., Liang, C., Chen, Y., Lv, S., Liang, S., Wu, X. and Huang, Q. (2014) Protective effect of genistein on lipopolysaccharide/D-galactosamine- induced hepatic failure in mice. Biol. Pharm. Bull. 37, 625-632. https://doi.org/10.1248/bpb.b13-00908
  22. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U.S.A. 92, 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  23. Ma, W., Yuan, L., Yu, H., Ding, B., Xi, Y., Feng, J. and Xiao, R. (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25-35 in PC12 cells. Int. J. Dev. Neurosci. 28, 289-295. https://doi.org/10.1016/j.ijdevneu.2010.03.003
  24. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55, 4169-4177. https://doi.org/10.1021/jm2014315
  25. Moran, J., Garrido, P., Cabello, E., Alonso, A. and Gonzalez, C. (2014) Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp. Gerontol. 58C, 104-112.
  26. Morck, C. and Pilon, M. (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39. https://doi.org/10.1186/1471-213X-6-39
  27. Mukai, Y. and Sato, S. (2009) Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension. Nutr. Metab. Cardiovasc. Dis. 19, 491-497. https://doi.org/10.1016/j.numecd.2008.09.007
  28. Oh, H. M., Lee, S. W., Yun, B. R., Hwang, B. S., Kim, S. N., Park, C. S., Jeoung, S. H., Kim, H. K., Lee, W. S. and Rho, M. C. (2014) Vigna angularis inhibits IL-6-induced cellular signalling and ameliorates collagen-induced arthritis. Rheumatology (Oxford) 53, 56-64. https://doi.org/10.1093/rheumatology/ket302
  29. Partridge, L., Gems, D. and Withers, D. J. (2005) Sex and death: what is the connection? Cell 120, 461-472. https://doi.org/10.1016/j.cell.2005.01.026
  30. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W. and Johnson, T. E. (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat. Genet. 37, 894-898. https://doi.org/10.1038/ng1608
  31. Song, L., Liang, X. and Zhou, Y. (2014) Estrogen-mimicking isoflavone genistein prevents bone loss in a rat model of obstructive sleep apnea-hypopnea syndrome. Int. J. Clin. Exp. Pathol. 7, 1687-1694.
  32. Swindell, W. R. (2009) Heat shock proteins in long-lived worms and mice with insulin/insulin-like signaling mutations. Aging (Albany NY) 1, 573-577.
  33. Wang, S., Wei, H., Cai, M., Lu, Y., Hou, W., Yang, Q., Dong, H. and Xiong, L. (2014) Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice. Int. J. Biol. Sci. 10, 457-465. https://doi.org/10.7150/ijbs.7562
  34. Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011) A determination of potential alpha-glucosidase inhibitors from Azuki Beans (Vigna angularis). Int. J. Mol. Sci. 12, 6445-6451. https://doi.org/10.3390/ijms12106445

Cited by

  1. Drug repurposing for aging research using model organisms vol.16, pp.5, 2017, https://doi.org/10.1111/acel.12626
  2. Black Adzuki Bean (Vigna angularis) Extract Protects Pancreatic β Cells and Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet vol.19, pp.5, 2016, https://doi.org/10.1089/jmf.2015.3598
  3. A Bioinformatic Approach for the Discovery of Antiaging Effects of Baicalein from Scutellaria baicalensis Georgi vol.19, pp.5, 2016, https://doi.org/10.1089/rej.2015.1760
  4. Current Perspective in the Discovery of Anti-aging Agents from Natural Products 2017, https://doi.org/10.1007/s13659-017-0135-9
  5. Nutrigenomics at the Interface of Aging, Lifespan, and Cancer Prevention vol.146, pp.10, 2016, https://doi.org/10.3945/jn.116.235119
  6. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051219
  7. Antiaging effects of bioactive molecules isolated from plants and fungi pp.01986325, 2019, https://doi.org/10.1002/med.21559
  8. Plant and fungal products that extend lifespan in Caenorhabditis elegans vol.7, pp.10, 2015, https://doi.org/10.15698/mic2020.10.731
  9. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review vol.265, pp.None, 2015, https://doi.org/10.1016/j.jep.2020.113328
  10. Youthful and age‐related matreotypes predict drugs promoting longevity vol.20, pp.9, 2015, https://doi.org/10.1111/acel.13441
  11. Random forest classification for predicting lifespan-extending chemical compounds vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-93070-6
  12. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans vol.26, pp.23, 2021, https://doi.org/10.3390/molecules26237323