References
- Barragan, P., Bouvier, J. L., Roquebert, P. O., Macaluso, G., Commeau, P., Comet, B., Lafont, A., Camoin, L., Walter, U. and Eigenthaler, M. (2003) Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter. Cardiovasc. Interv. 59, 295-302. https://doi.org/10.1002/ccd.10497
- Castro-Malaspina, H., Rabellino, E. M., Yen, A., Nachman, R. L. and Moore, M. A. (1981) Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 57, 781-787.
- Chen, J., De, S., Damron, D. S., Chen, W. S., Hay, N. and Byzova, T. V. (2004) Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 104, 1703-1710. https://doi.org/10.1182/blood-2003-10-3428
- Cho, H. J., Cho, J. Y., Rhee, M. H., Lim, C. R., and Park, H. J. (2006) Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation induced by U46619, a TXA2 analogue. J. Pharm. Pharmacol. 58, 1677-1682. https://doi.org/10.1211/jpp.58.12.0016
- Cho, H. J., Cho, J. Y., Rhee, M. H. and Park, H. J. (2007a) Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur. J. Pharmacol. 558, 43-51. https://doi.org/10.1016/j.ejphar.2006.11.073
- Cho, H. J., Cho J. Y., Rhee, M. H., Kim, H. S., Lee, H. S., and Park, H. J. (2007b) Inhibitory effects of cordycepin (3'-deoxyadenosine), a component of Cordyceps militaris, on human platelet aggregation induced by thapsigargin. J. Microbiol. Biotechnol. 17, 1134-1138.
- Clutton, P., Folts, J. D. and Freedman, J. E. (2001) Pharmacological control of platelet function. Pharmacol. Res. 44, 255-264. https://doi.org/10.1006/phrs.2001.0861
- Eigenthaler, M., Nolte, C., Halbrugge, M. and Walter U. (1992) Concentration and regulation of cyclic nucleotides, cyclic-nucleotidedependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur. J. Biochem. 205, 471-481. https://doi.org/10.1111/j.1432-1033.1992.tb16803.x
- Gambaryan, S., Kobsar, A., Rukoyatkina, N., Herterich, S., Geiger, J., Smolenski, A., Lohmann, S. M. and Walter, U. (2010) Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J. Biol. Chem. 285, 18352-18363. https://doi.org/10.1074/jbc.M109.077602
- Hayashi, H. and Sudo, T. (2009) Effects of the cAMP-elevating agents cilostamide, cilostazol and forskolin on the phosphorylation of Akt and GSK-3beta in platelets. Thromb. Haemost. 102, 327-335.
- Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., Yancopoulos, G. D. and Wiegand, S. J. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994-1998. https://doi.org/10.1126/science.284.5422.1994
- Horstrup, K., Jablonka, B., Honig-Liedl, P., Just, M., Kochsiek, K. and Walter, U. (1994) Phosphorylation of focal adhesion vasodilatorstimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur. J. Biochem. 225, 21-27. https://doi.org/10.1111/j.1432-1033.1994.00021.x
- Jennings, L. K. (2009) Role of platelets in atherothrombosis. Am. J. Cardiol. 103, 4A-10A. https://doi.org/10.1016/S0002-9149(09)00558-X
- Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y. and Nishizuka, Y. (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 3, 323-335. https://doi.org/10.1016/0143-4160(82)90020-3
- Kamruzzaman, S. M., Yayeh, T., Ji, H. D., Park, J.Y., Kwon, Y. S., Lee, I. K., Kim, S., Oh, S. H., Kim, S. D., Roh, S. S., Yun, B. S. and Rhee, M. H. (2013) p-Terphenyl curtisian E inhibits in vitro platelet aggregation via cAMP elevation and VASP phosphorylation. Vascul. Pharmacol. 59, 83-89. https://doi.org/10.1016/j.vph.2013.07.002
- Kim, H. G., Shrestha, B., Lim, S. Y., Yoon, D. H., Chang, W. C., Shin, D. J., Han, S. K., Park, S. M., Park, J. H., Park, H. I., Sung, J. M., Jang, Y., Chung, N., Hwang, K. C. and Kim, T. W. (2006) Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 545, 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
- Laurent, V., Loisel, T. P., Harbeck, B., Wehman, A., Grobe, L., Jockusch, B. M., Wehland, J., Gertler, F. B. and Carlier, M. (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144, 1245-1258. https://doi.org/10.1083/jcb.144.6.1245
-
Lee, D. H., Kim, H. H., Cho, H.J., Bae, J. S., Yu, Y. B. and Park, H. J. (2014a) Antiplatelet effects of caffeic acid due to
$Ca^{2+}$ mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb. 21, 23-37. -
Lee, D. H., Kim, H. H., Cho, H. J., Yu, Y. B., Kang, H. C., Kim, J. L., Lee, J. J. and Park, H. J. (2014b) Cordycepin-Enriched WIB801C from Cordyceps militaris inhibits collagen-induced [
$Ca^{2+}$ ]i mobilization via cAMP-dependent phosphorylation of inositol 1, 4, 5-trisphosphate receptor in human platelets. Biomol. Ther. 22, 223-231. https://doi.org/10.4062/biomolther.2014.025 -
Lee, D. H., Kwon, H. W., Kim, H. H., Lim, D. H., Nam, G. S., Shin, J. H., Kim, Y. Y., Kim, J. L., Lee, J. J., Kwon, H. K. and Park, H. J. (2014c) Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [
$Ca^{2+}$ ]i mobilization and fibrinogen binding via phosphorylation of IP3R and VASP. Arch. Pharm. Res. DOI 10.1007/ s12272-014-0436-z. [Epub ahead of print] - Li, Z., Ajdic, J., Eigenthaler, M. and Du, X. (2003) A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood 101, 4423-4429. https://doi.org/10.1182/blood-2002-10-3210
- Lincoff, A. M., Califf, R. M. and Topol, E. J. (2000) Platelet glycoprotein IIb/IIIa receptor blockade in coronary artery disease. J. Am. Coll. Cardiol. 35, 1103-1115. https://doi.org/10.1016/S0735-1097(00)00554-4
- Michal, F. and Motamed, M. (1976) Shape change and aggregation of blood platelets: interaction between the effects of adenosine and diphosphate, 5-hydroxytryptamine and adrenaline. Br. J. Pharmacol. 56, 209-218. https://doi.org/10.1111/j.1476-5381.1976.tb07444.x
- Morello, F., Perino, A. and Hirsch, E. (2009) Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc. Res. 82, 261-271.
- Nagai, R., Suzuki, T., Aizawa, K., Shindo, T. and Manabe, I. (2005) Significance of the transcription factor KLF5 in cardiovascular remodeling. J. Thromb. Haemost. 3, 1569-1576. https://doi.org/10.1111/j.1538-7836.2005.01366.x
-
Nishikawa, M., Tanaka, T. and Hidaka, H. (1980)
$Ca^{2+}$ -calmodulindependent phosphorylation and platelet secretion. Nature 287, 863-865. https://doi.org/10.1038/287863a0 - Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park, H. J. (2012) Epigallocatechin-3- gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J. Atheroscler. Thromb. 19, 337-348. https://doi.org/10.5551/jat.10363
- Packham, M. A. and Mustard, J. F. (1986) The role of platelets in the development and complications of atherosclerosis. Semin. Hematol. 23, 8-26.
- Payrastre, B., Missy, K., Trumel, C., Bodin, S., Plantavid, M. and Chap, H. (2000) The integrin alpha IIb/beta 3 in human platelet signal transduction. Biochem. Pharmacol. 60, 1069-1074. https://doi.org/10.1016/S0006-2952(00)00417-2
-
Phillips, D. R., Nannizzi-Alaimo, L. and Prasad K.S. (2001)
${\beta}_{3}$ tyrosine phosphorylation in${\alpha}IIb/{\beta}_{3}$ (platelet membrane GP IIb-IIIa) outsidein integrin signaling. Thromb. Haemost. 86, 246-58. - Phillips, D. R., Conley, P. B., Sinha, U. and Andre, P. (2005) Therapeutic approaches in arterial thrombosis. J. Thromb. Haemost. 3, 1577-1589. https://doi.org/10.1111/j.1538-7836.2005.01418.x
- Sabatine, M. S. and Jang, I. K. (2000) The use of glycoprotein IIb/ IIIa inhibitors in patients with coronary artery disease. Am. J. Med. 109, 224-237. https://doi.org/10.1016/S0002-9343(00)00474-5
- Schwartz, S. M. and Ross, R. (1984) Cellular proliferation in atherosclerosis and hypertension. Prog. Cardiovasc. Dis. 26, 355-372. https://doi.org/10.1016/0033-0620(84)90010-0
- Schwartz, S. M. and Reidy, M.A. (1987) Common mechanisms of proliferation of smooth muscle in atherosclerosis and hypertension. Hum. Pathol. 18, 240-247. https://doi.org/10.1016/S0046-8177(87)80006-0
- Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177
- Seppa, H., Grotendorst, G., Seppa, S., Schiffmann, E. and Martin, G. R. (1982) Platelet-derived growth factor in chemotactic for fibroblasts. J. Cell Biol. 92, 584-588. https://doi.org/10.1083/jcb.92.2.584
- Shattil, S. J. and Newman, P. J. (2004) Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 104, 1606-1615. https://doi.org/10.1182/blood-2004-04-1257
- Smolenski, A., Bachmann, C., Reinhard, K., Honig-Liedl, P., Jarchau, T., Hoschuetzky, H. and Walter U. (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J. Biol. Chem. 273, 20029-20035. https://doi.org/10.1074/jbc.273.32.20029
- Sudo, T., Ito, H. and Kimura, Y. (2003) Phosphorylation of the vasodilator- stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14, 381-390. https://doi.org/10.1080/09537100310001598819
- van Willigen, G. and Akkerman, J. W. (1991) Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIB-IIIA complex of human platelets. Biochem. J. 273, 115-120. https://doi.org/10.1042/bj2730115
- Weiss, H. J., Tschopp, T. B., Rogers, J. and Brand, H. (1974) Studies of platelet 5-hydroxytryptamine (serotonin) in storage pool disease and albinism. J. Clin. Invest. 54, 421-433. https://doi.org/10.1172/JCI107778
- Wong, Y. Y., Moon, A., Duffin, R., Barthet-Barateig, A., Meijer, H. A., Clemens, M. J. and de Moor, C. H. (2010) Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J. Biol. Chem. 285, 2610-2621. https://doi.org/10.1074/jbc.M109.071159
- Yue, G. G., Lau, C. B., Fung, K. P., Leung, P. C., and Ko, W. H. (2008) Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J. Ethnopharmacol. 117, 92-101. https://doi.org/10.1016/j.jep.2008.01.030
- Zhang, J., Zhang, J., Shattil, S. J., Cunningham, M. C. and Rittenhouse, S. E. (1996) Phosphoinositide 3-kinase gamma and p85/ phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or beta-phorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J. Biol. Chem. 271, 6265-6272. https://doi.org/10.1074/jbc.271.11.6265
Cited by
- Antiplatelet and antithrombotic effects of cordycepin-enriched WIB-801CE from Cordyceps militaris ex vivo, in vivo, and in vitro vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1463-8
- Post-ischemic treatment of WIB801C, standardized Cordyceps extract, reduces cerebral ischemic injury via inhibition of inflammatory cell migration vol.186, 2016, https://doi.org/10.1016/j.jep.2016.03.052
- Anti-platelet and anti-thrombotic effect of a traditional herbal medicine Kyung-Ok-Ko vol.178, 2016, https://doi.org/10.1016/j.jep.2015.11.040
- Antiplatelet Effects of Cordycepin-Enriched WIB-801CE from Cordyceps militaris: Involvement of Thromboxane A2,Serotonin, Cyclooxygenase-1, Thromboxane A2 Synthase,Cytosolic Phospholipase A2 vol.22, pp.4, 2016, https://doi.org/10.15616/BSL.2016.22.4.127
- New Anticoagulants for the Prevention and Treatment of Venous Thromboembolism vol.25, pp.5, 2017, https://doi.org/10.4062/biomolther.2016.271
- The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38 vol.49, pp.2, 2017, https://doi.org/10.15324/kjcls.2017.49.2.99
- Cordyceps militaris: An Overview of Its Chemical Constituents in Relation to Biological Activity vol.10, pp.11, 2015, https://doi.org/10.3390/foods10112634