DOI QR코드

DOI QR Code

Atractylochromene Is a Repressor of Wnt/β-Catenin Signaling in Colon Cancer Cells

  • Shim, Ah-Ram (Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University) ;
  • Dong, Guang-Zhi (Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University) ;
  • Lee, Hwa Jin (Department of Natural Medicine Resources, Semyung University) ;
  • Ryu, Jae-Ha (Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University)
  • Received : 2014.08.19
  • Accepted : 2014.10.02
  • Published : 2015.01.01

Abstract

Wnt/${\beta}$-catenin signaling pathway was mutated in about 90% of the sporadic and hereditary colorectal cancers. The abnormally activated ${\beta}$-catenin increases the cancer cell proliferation, differentiation and metastasis through increasing the expression of its oncogenic target genes. In this study, we identified an inhibitor of ${\beta}$-catenin dependent Wnt pathway from rhizomes of Atractylodes macrocephala Koidzumi (Compositae). The active compound was purified by activity-guided purification and the structure was identified as 2,8-dimethyl-6-hydroxy-2-(4-methyl-3-pentenyl)-2H-chromene (atractylochromene, AC). AC suppressed b-catenin/Tcell factor transcriptional activity of HEK-293 reporter cells when they were stimulated by Wnt3a or inhibitor of glycogen synthase kinase-$3{\beta}$. AC down-regulated the nuclear level of ${\beta}$-catenin through the suppression of galectin-3 mediated nuclear translocation of ${\beta}$-catenin in SW-480 colon cancer cells. Furthermore, AC inhibits proliferation of colon cancer cell. Taken together, AC from A. macrocephala might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

Keywords

References

  1. Blanchard, H., Yu, X., Collins, P. M. and Bum-Erdene, K. (2014) Galectin- 3 inhibitors: a patent review (2008-present). Expert Opin. Ther. Pat. 24, 1-13. https://doi.org/10.1517/13543776.2014.854773
  2. Chen, H. C., Chou, C. K., Lee, S. D., Wang, J. C. and Yeh, S. F. (1995) Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res. 27, 99-109. https://doi.org/10.1016/0166-3542(94)00083-K
  3. Delaine, T., Cumpstey, I., Ingrassia, L., Le Mercier, M., Okechukwu, P., Leffler, H., Kiss, R. and Nilsson, U. J. (2008) Galectin-inhibitory thiodigalactoside ester derivatives have antimigratory effects in cultured lung and prostate cancer cells. J. Med. Chem. 51, 8109-8114. https://doi.org/10.1021/jm801077j
  4. Dong, H., He, L., Huang, M. and Dong, Y. (2008) Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Nat. Prod. Res. 22, 1418-1427. https://doi.org/10.1080/14786410801931629
  5. Fearnhead, N. S., Britton, M. P. and Bodmer, W. F. (2001) The ABC of APC. Hum. Mol. Genet. 10, 721-733. https://doi.org/10.1093/hmg/10.7.721
  6. Fukumori, T., Kanayama, H. O. and Raz, A. (2007) The role of galectin- 3 in cancer drug resistance. Cancer Metastasis Rev. 10, 101-108.
  7. Harazono, Y., Nakajima, K. and Raz, A. (2014) Why anti-Bcl-2 clinical trials fail: a solution. Cancer Metastasis Rev. 33, 285-294. https://doi.org/10.1007/s10555-013-9450-8
  8. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. and Kinzler, K. W. (1998) Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512. https://doi.org/10.1126/science.281.5382.1509
  9. Inohara, H., Akahani, S. and Raz, A. (1998) Galectin-3 stimulates cell proliferation. Exp. Cell Res. 245, 294-302. https://doi.org/10.1006/excr.1998.4253
  10. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. (2011) Global cancer statistics. CA Cancer J. Clin. 61, 69-90. https://doi.org/10.3322/caac.20107
  11. Kim, C. K., Kim, M., Oh, S. D., Lee, S. M., Sun, B., Choi, G. S., Kim, S. K., Bae, H., Kang, C. and Min, B. I. (2011) Effects of Atractylodes macrocephala Koidzumi rhizome on 3T3-L1 adipogenesis and an animal model of obesity. J. Ethnopharmacol. 137, 396-402. https://doi.org/10.1016/j.jep.2011.05.036
  12. Kobayashi, M., Honma, T., Matsuda, Y., Suzuki, Y., Narisawa, R., Ajioka, Y. and Asakura, H. (2000) Nuclear translocation of beta-catenin in colorectal cancer. Br. J. Cancer 82, 1689-1693. https://doi.org/10.1054/bjoc.1999.1112
  13. Li, H., Lee, H. J., Ahn, Y. H., Kwon, H. J., Jang, C. Y., Kim, W. Y. and Ryu, J. H. (2014) Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of beta-catenin. Biochem. Biophys. Res. Commun. 443, 132-137. https://doi.org/10.1016/j.bbrc.2013.11.062
  14. Li, X., Lin, J., Han, W., Mai, W., Wang, L., Li, Q., Lin, M., Bai, M., Zhang, L. and Chen, D. (2012) Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala. Molecules 17, 13457-13472. https://doi.org/10.3390/molecules171113457
  15. Lin, H. M., Moon, B. K., Yu, F. and Kim, H. R. (2000) Galectin-3 mediates genistein-induced G(2)/M arrest and inhibits apoptosis. Carcinogenesis 21, 1941-1945. https://doi.org/10.1093/carcin/21.11.1941
  16. Liu, C., Zhao, H., Ji, Z. H. and Yu, X. Y. (2014) Neuroprotection of atractylenolide III from atractylodis macrocephalae against glutamate- induced neuronal apoptosis via inhibiting caspase signaling pathway. Neurochem. Res. 39, 1753-1758 https://doi.org/10.1007/s11064-014-1370-7
  17. Matsuda, H., Li, Y. H., Taniguchi, K., Yamahara, J. and Tamai, Y. (1991) [Imaging analysis of antiulcer action and the active constituent of Atractylodis rhizoma]. Yakugaku. Zasshi. 111, 36-39. https://doi.org/10.1248/yakushi1947.111.1_36
  18. Miyaki, M., Konishi, M., Kikuchi-Yanoshita, R., Enomoto, M., Igari, T., Tanaka, K., Muraoka, M., Takahashi, H., Amada, Y., Fukayama, M. and et al. (1994) Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 54, 3011-3020.
  19. Morgan, R. G., Ridsdale, J., Tonks, A. and Darley, R. L. (2014) Factors affecting the nuclear localization of beta-catenin in normal and malignant tissue. J. Cell. Biochem. 115, 1351-1361. https://doi.org/10.1002/jcb.24803
  20. Mori, H., Xu, Q., Sakamoto, O., Uesugi, Y., Koda, A. and Nishioka, I. (1989) Mechanisms of antitumor activity of aqueous extracts from Chinese herbs: their immunopharmacological properties. Jpn. J. Pharmacol. 49, 423-431. https://doi.org/10.1254/jjp.49.423
  21. Morin, P. J. (1999) beta-catenin signaling and cancer. Bioessays 21, 1021-1030. https://doi.org/10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P
  22. Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R. and Raz, A. (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 94, 1854-1862. https://doi.org/10.1093/jnci/94.24.1854
  23. Nangia-Makker, P., Honjo, Y., Sarvis, R., Akahani, S., Hogan, V., Pienta, K. J. and Raz, A. (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 156, 899-909. https://doi.org/10.1016/S0002-9440(10)64959-0
  24. Nangia-Makker, P., Nakahara, S., Hogan, V. and Raz, A. (2007) Galectin- 3 in apoptosis, a novel therapeutic target. J. Bioenerg. Biomembr. 39, 79-84. https://doi.org/10.1007/s10863-006-9063-9
  25. Resch, M., Steigel, A., Chen, Z. L. and Bauer, R. (1998) 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Pro. 61, 347-350. https://doi.org/10.1021/np970430b
  26. Song, L., Tang, J. W., Owusu, L., Sun, M. Z., Wu, J. and Zhang, J. (2014) Galectin-3 in cancer. Clin. Chim. Acta 431, 185-191. https://doi.org/10.1016/j.cca.2014.01.019
  27. Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C. and Bresalier, R. S. (2009) Galectin-3 mediates nuclear betacatenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res. 69, 1343-1349. https://doi.org/10.1158/0008-5472.CAN-08-4153
  28. Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426. https://doi.org/10.1038/18884
  29. Zhang, T., Otevrel, T., Gao, Z., Gao, Z., Ehrlich, S. M., Fields, J. Z. and Boman, B. M. (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 61, 8664-8667.

Cited by

  1. Suppression of Lipopolysaccharide-Induced Neuroinflammation by Morin via MAPK, PI3K/Akt, and PKA/HO-1 Signaling Pathway Modulation vol.65, pp.2, 2017, https://doi.org/10.1021/acs.jafc.6b05147
  2. Ameliorating Effects of Atractylodes macrocephala Koidzumi on TNF-α-induced 3T3-L1 Adipocyte Dysfunction vol.32, pp.3, 2015, https://doi.org/10.14406/acu.2015.020
  3. Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway vol.18, 2015, https://doi.org/10.1016/j.jff.2015.06.059
  4. Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer vol.22, pp.30, 2016, https://doi.org/10.3748/wjg.v22.i30.6764
  5. Effects of complex extracts of traditional Chinese herbs on gastric mucosal injury in rats and potential underlying mechanism vol.2, pp.3, 2015, https://doi.org/10.1002/fft2.73