DOI QR코드

DOI QR Code

Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells

  • Ryu, Yun-Kyoung (Department of Bioscience and Biotechnology, Sejong University) ;
  • Lee, Jae-Wook (Department of Bioscience and Biotechnology, Sejong University) ;
  • Moon, Eun-Yi (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2014.09.11
  • Accepted : 2014.10.30
  • Published : 2015.01.01

Abstract

Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 ($T{\beta}4$), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by $T{\beta}4$ expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of $T{\beta}4$. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(${\beta}$-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of $T{\beta}4$ expression with $T{\beta}4$-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with $N^G$-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in $T{\beta}4$ expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-$T{\beta}4$ plasmids for $T{\beta}4$ overexpression. Taken together, these results suggest that $T{\beta}4$ could be a regulator for the expression of VEGF via the maintenance of NOS activity.

Keywords

References

  1. Brakebusch, C. and Fassler, R. (2005) beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24, 403-411. https://doi.org/10.1007/s10555-005-5132-5
  2. Chamorro-Jorganes, A., Calleros, L., Griera, M., Saura, M., Luengo, A., Rodriguez-Puyol, D. and Rodriguez-Puyol, M. (2011) Fibronectin upregulates cGMP-dependent protein kinase type Ibeta through C/EBP transcription factor activation in contractile cells. Am. J. Physiol. Cell Physiol. 300, C683-691. https://doi.org/10.1152/ajpcell.00251.2010
  3. Chartrain, N. A., Geller, D. A., Koty, P. P., Sitrin, N. F., Nussler, A. K., Hoffman, E. P., Billiar, T. R., Hutchinson, N. I. and Mudgett, J. S. (1994) Molecular-cloning, structure, and chromosomal localization of the human inducible nitric-oxide synthase gene. J. Biol. Chem. 269, 6765-6772.
  4. Cho, W. K., Seong, Y. R., Lee, Y. H., Kim, M. J., Hwang, K. S., Yoo, J., Choi, S., Jung, C. R. and Im, D. S. (2004) Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumor. Mol. Ther. 10, 938-949. https://doi.org/10.1016/j.ymthe.2004.07.023
  5. Curran, J., Tang, L., Roof, S. R., Velmurugan, S., Millard, A., Shonts, S., Wang, H., Santiago, D., Ahmad, U., Perryman, M., Bers, D. M., Mohler, P. J., Ziolo, M. T. and Shannon, T. R. (2014) Nitric oxidedependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation. PLoS ONE 9, e87495. https://doi.org/10.1371/journal.pone.0087495
  6. Deguchi, A., Thompson, W. J. and Weinstein, I. B. (2004) Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer Res. 64, 3966-3973. https://doi.org/10.1158/0008-5472.CAN-03-3740
  7. Fukumura, D., Kashiwagi, S. and Jain, R. K. (2006) The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521-534. https://doi.org/10.1038/nrc1910
  8. Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., Mu, H., Melo, L. G., Pratt, R. E., Ingwall, J. S. and Dzau, V. J. (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661-669. https://doi.org/10.1096/fj.05-5211com
  9. Hall, A. V., Antoniou, H., Wang, Y., Cheung, A. H., Arbus, A. M., Olson, S. L., Lu, W. C., Kau, C. L. and Marsden, P. A. (1994) Structural organization of the human neuronal nitric-oxide synthase gene (Nos1). J. Biol. Chem. 269, 33082-33090.
  10. Huang, H. C., Hu, C. H., Tang, M. C., Wang, W. S., Chen, P. M. and Su, Y. (2007) Thymosin beta4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26, 2781-2790. https://doi.org/10.1038/sj.onc.1210078
  11. Huang, L. E., Gu, J., Schau, M. and Bunn, H. F. (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 7987-7992. https://doi.org/10.1073/pnas.95.14.7987
  12. Huff, T., Muller, C. S., Otto, A. M., Netzker, R. and Hannappel, E. (2001) beta-Thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33, 205-220. https://doi.org/10.1016/S1357-2725(00)00087-X
  13. Hussain, S. P., He, P., Subleski, J., Hofseth, L. J., Trivers, G. E., Mechanic, L., Hofseth, A. B., Bernard, M., Schwank, J., Nguyen, G., Mathe, E., Djurickovic, D., Haines, D., Weiss, J., Back, T., Gruys, E., Laubach, V. E., Wiltrout, R. H. and Harris, C. C. (2008) Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 68, 7130-7136. https://doi.org/10.1158/0008-5472.CAN-08-0410
  14. Im, Y. S., Ryu, Y. K. and Moon, E. Y. (2012) Mouse melanoma cell migration is dependent on production of reactive oxygen species under normoxia condition. Biomol. Ther. 20, 165-170. https://doi.org/10.4062/biomolther.2012.20.2.165
  15. Jo, J. O., Kim, S. R., Bae, M. K., Kang, Y. J., Ock, M. S., Kleinman, H. K. and Cha, H. J. (2010) Thymosin beta4 induces the expression of vascular endothelial growth factor (VEGF) in a hypoxia-inducible factor (HIF)-1alpha-dependent manner. Biochim. Biophys. Acta 1803, 1244-1251. https://doi.org/10.1016/j.bbamcr.2010.07.005
  16. Kanao, T., Sawada, T., Davies, S. A., Ichinose, H., Hasegawa, K., Takahashi, R., Hattori, N. and Imai, Y. (2012) The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila. PLoS One 7, e30958. https://doi.org/10.1371/journal.pone.0030958
  17. Kim, H. S., Oh, J. M., Jin, D. H., Yang, K. H. and Moon, E. Y. (2008) Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production. Pharmacology 81, 317-324. https://doi.org/10.1159/000119756
  18. Low, T. L., Hu, S. K. and Goldstein, A. L. (1981) Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc. Natl. Acad. Sci. U.S.A. 78, 1162-1166. https://doi.org/10.1073/pnas.78.2.1162
  19. Marsden, P. A., Heng, H. H. Q., Scherer, S. W., Stewart, R. J., Hall, A. V., Shi, X. M., Tsui, L. C. and Schappert, K. T. (1993) Structure and chromosomal localization of the human constitutive endothelial nitric-oxide synthase gene. J. Biol. Chem. 268, 17478-17488.
  20. Maulik, N. and Das, D. K. (2002) Redox signaling in vascular angiogenesis. Br. J. Pharmacol. 33, 1047-1060.
  21. Moncada, S. and Higgs, E. A. (2006) The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147, S193-S201.
  22. Moon, E. Y., Im, Y. S., Ryu, Y. K. and Kang, J. H. (2010) Actin-sequestering protein, thymosin beta-4, is a novel hypoxia responsive regulator. Clin. Exp. Metastasis 27, 601-609. https://doi.org/10.1007/s10585-010-9350-z
  23. Moon, E. Y., Song, J. H. and Yang, K. H. (2007) Actin-sequestering protein, thymosin-beta-4 (TB4), inhibits caspase-3 activation in paclitaxel-induced tumor cell death. Oncol. Res. 16, 507-516. https://doi.org/10.3727/096504007783438349
  24. Moon, E. Y., Yi, G. H., Kang, J. S., Lim, J. S., Kim, H. M. and Pyo, S. (2011) An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J. Immunotoxicol. 8, 56-67. https://doi.org/10.3109/1547691X.2010.543995
  25. Murad, F. (2006) Shattuck Lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N. Engl. J. Med. 355, 2003-2011. https://doi.org/10.1056/NEJMsa063904
  26. Oh, J. M., Ryoo, I. J., Yang, Y., Kim, H. S., Yang, K. H. and Moon, E. Y. (2008) Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin beta-4 (TB4) in Hela cervical tumor cells. Cancer Lett. 264, 29-35. https://doi.org/10.1016/j.canlet.2008.01.004
  27. Oh, J. M., Ryu, Y. K., Lim, J. S. and Moon, E. Y. (2010) Hypoxia induces paclitaxel-resistance through ROS production. Biomol. Ther. 18, 145-151. https://doi.org/10.4062/biomolther.2010.18.2.145
  28. Oh, S. Y., Song, J. H., Gil, J. E., Kim, J. H., Yeom, Y. I. and Moon, E. Y. (2006) ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance. Exp. Cell Res. 312, 1651-1657. https://doi.org/10.1016/j.yexcr.2006.01.030
  29. Oliveira, C. J., Schindler, F., Ventura, A. M., Morais, M. S., Arai, R. J., Debbas, V., Stern, A. and Monteiro, H. P. (2003) Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells. Free Radic. Biol. Med. 35, 381-396. https://doi.org/10.1016/S0891-5849(03)00311-3
  30. Richard, D. E., Berra, E. and Pouyssegur, J. (1999) Angiogenesis: how a tumor adapts to hypoxia. Biochem. Biophys. Res. Commun. 266, 718-722. https://doi.org/10.1006/bbrc.1999.1889
  31. Ryu, Y. K., Lee, Y. S., Lee, G. H., Song, K. S., Kim, Y. S. and Moon, E. Y. (2012) Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int. J. Cancer 131, 2067-2077. https://doi.org/10.1002/ijc.27490
  32. Safer, D., Elzinga, M. and Nachmias, V. T. (1991) Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029-4032.
  33. Salceda, S. and Caro, J. (1997) Hypoxia-inducible factor 1alpha (HIF- 1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642-22647. https://doi.org/10.1074/jbc.272.36.22642
  34. Semenza, G. L. (2000) HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev. 19, 59-65. https://doi.org/10.1023/A:1026544214667
  35. Smart, N., Risebro, C. A., Melville, A. A., Moses, K., Schwartz, R. J., Chien, K. R. and Riley, P. R. (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177-182. https://doi.org/10.1038/nature05383
  36. Sosne, G., Siddiqi, A. and Kurpakus-Wheater, M. (2004) Thymosin-beta4 inhibits corneal epithelial cell apoptosis after ethanol exposure in vitro. Invest. Ophthalmol. Vis. Sci. 45, 1095-1100. https://doi.org/10.1167/iovs.03-1002
  37. Tejedo, J. R., Cahuana, G. M., Ramirez, R., Esbert, M., Jimenez, J., Sobrino, F. and Bedoya, F. J. (2004) nitric oxide triggers the phosphatidylinositol 3-kinase/Akt survival pathway in insulin-producing RINm5F cells by arousing Src to activate insulin receptor substrate- 1. Endocrinology 145, 2319-2327. https://doi.org/10.1210/en.2003-1489
  38. Wang, W. S., Chen, P. M., Hsiao, H. L., Ju, S. Y. and Su, Y. (2003) Overexpression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22, 3297-3306. https://doi.org/10.1038/sj.onc.1206404
  39. Wang, W. S., Chen, P. M., Hsiao, H. L., Wang, H. S., Liang, W. Y. and Su, Y. (2004) Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23, 6666-6671. https://doi.org/10.1038/sj.onc.1207888
  40. Wink, D. A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M. W. and Mitchell, J. B. (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711-721. https://doi.org/10.1093/carcin/19.5.711
  41. Xu, W., Liu, L. Z., Loizidou, M., Ahmed, M. and Charles, I. G. (2002) The role of nitric oxide in cancer. Cell Res. 12, 311-320. https://doi.org/10.1038/sj.cr.7290133
  42. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza, G. L. and Simons, J. W. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830-5835.
  43. Zvaifler, N. J. (2006) Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res. Ther. 8, 210. https://doi.org/10.1186/ar1963

Cited by

  1. Polarized macrophages treated with nonylphenol differently regulate lipopolysaccharide-induced sepsis vol.31, pp.12, 2016, https://doi.org/10.1002/tox.22340
  2. Curcumin hampers the antitumor effect of vinblastine via the inhibition of microtubule dynamics and mitochondrial membrane potential in HeLa cervical cancer cells vol.23, pp.7, 2016, https://doi.org/10.1016/j.phymed.2016.03.011
  3. Nonylphenol increases tumor formation and growth by suppressing gender-independent lymphocyte proliferation and macrophage activation vol.32, pp.6, 2017, https://doi.org/10.1002/tox.22385
  4. Synovial cell death is regulated by TNF-α-induced expression of B-cell activating factor through an ERK-dependent increase in hypoxia-inducible factor-1α vol.8, pp.4, 2017, https://doi.org/10.1038/cddis.2017.26
  5. Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization 2018, https://doi.org/10.1016/j.jgr.2016.12.012
  6. Hypoxia Response Elements Can Cause the Overexpression of the BAX mRNA Under Hypoxic Condition vol.In Press, pp.In Press, 2016, https://doi.org/10.17795/ijcp-4554
  7. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase vol.26, pp.6, 2015, https://doi.org/10.4062/biomolther.2018.179
  8. Curcumin-Induced Autophagy Augments Its Antitumor Effect against A172 Human Glioblastoma Cells vol.27, pp.5, 2015, https://doi.org/10.4062/biomolther.2019.107
  9. 2-Arachidonyl-lysophosphatidylethanolamine Induces Anti-Inflammatory Effects on Macrophages and in Carrageenan-Induced Paw Edema vol.22, pp.9, 2015, https://doi.org/10.3390/ijms22094865