DOI QR코드

DOI QR Code

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj (Department of Mechanical Engineering, University of Auckland) ;
  • Cleary, Paul W. (CSIRO Mathematics, Informatics and Statistics)
  • Received : 2014.08.08
  • Accepted : 2015.11.09
  • Published : 2015.12.25

Abstract

Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.

Keywords

References

  1. Aliabadi, M.H. and Rooke, D.P. (1991), Numerical Fracture Mechanics, Computational Mechanics Publications and Kluwer Academic Publishers.
  2. Bonet, J. and Kulasegaram, S. (2001), "Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods", Int. J. Numer. Meth. Eng., 52(11), 1203-1220. https://doi.org/10.1002/nme.242
  3. Cedric, T., Janssen, L.P.B.M. and Pep, E. (2005), "Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations", Physical Review E (Statistical, nonlinear, and soft matter Physics), 72(1), 016713. https://doi.org/10.1103/PhysRevE.72.016713
  4. Chen, J.K., Beraun, J.E. and Jih, C.J. (1999), "Improvement for tensile instability in smoothed particle hydrodynamics", Comput. Mech., 23(4), 279-287. https://doi.org/10.1007/s004660050409
  5. Cleary, P.W. (1998), "Modelling confined multi-material heat and mass flows using SPH", Appl. Math. Model., 22(12), 981-993. https://doi.org/10.1016/S0307-904X(98)10031-8
  6. Cleary, P.W. (2010a), "Elastoplastic deformation during projectile-wall collision", Appl. Math. Model., 34(2), 266-283. https://doi.org/10.1016/j.apm.2009.04.004
  7. Cleary, P.W. (2010b), "Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting", Appl. Math. Model., 34(11), 3189-3201. https://doi.org/10.1016/j.apm.2010.02.012
  8. Cleary, P.W. and Das, R. (2010a), "The potential for SPH modelling of solid deformation and fracture", IUTAM symposium on theoretical, Computational and modelling aspects of inelastic media, B.D. Reddy, Springer Netherlands, Volume 11, pp. 287-296.
  9. Cleary, P.W. and Monaghan, J.J. (1999), "Conduction modelling using smoothed particle hydrodynamics", J. Comput. Phys., 148(1), 227-264. https://doi.org/10.1006/jcph.1998.6118
  10. Cleary, P., Ha, J., Alguine, V. and Nguyen, T. (2002), "Flow modelling in casting processes", Appl. Math. Model., 26(2), 171-190. https://doi.org/10.1016/S0307-904X(01)00054-3
  11. Cleary, P.W., Ha, J., Prakash, M. and Nguyen, T. (2006a), "3D SPH flow predictions and validation for high pressure die casting of automotive components", Appl. Math. Model., 30(11), 1406-1427. https://doi.org/10.1016/j.apm.2006.03.012
  12. Cleary, P.W., Prakash, M. and Ha, J. (2006b), "Novel applications of smoothed particle hydrodynamics (SPH) in metal forming", J. Mater. Process. Tech., 177(1-3), 41-48. https://doi.org/10.1016/j.jmatprotec.2006.03.237
  13. Cleary, P.W., Prakash, M., Ha, J., Stokes, N. and Scott, C. (2007), "Smooth particle hydrodynamics: status and future potential", Prog. Comput. Fluid Dy., 7(2-4), 70-90. https://doi.org/10.1504/PCFD.2007.013000
  14. Cleary, P.W., Prakash, M., Das, R. and Ha, J. (2012), "Modelling of metal forging using SPH", Appl. Math. Model., 36(8), 3836-3855. https://doi.org/10.1016/j.apm.2011.11.019
  15. Das, R. and Cleary, P.W. (2006), "Uniaxial compression test and stress wave propagation modelling using SPH", Proceedings of the Fifth International Conference on Computational Fluid Dynamics in the Process Industries. Melbourne, Australia,
  16. Das, R. and Cleary, P.W. (2010), "Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics", Theor. Appl. Fract. Mec., 53(1), 47-60. https://doi.org/10.1016/j.tafmec.2009.12.004
  17. Das, R. and Cleary, P.W. (2013), "A mesh-free approach for fracture modelling of gravity dams under earthquake", Int. J. Fracture, 179(1-2), 9-33. https://doi.org/10.1007/s10704-012-9766-3
  18. Das, R. and Cleary, P.W. (2015a), "Evaluation of accuracy and stability of the classical SPH method under uniaxial compression", J. Sci. Comput., 64(3), 858-897. https://doi.org/10.1007/s10915-014-9948-4
  19. Das, R. and Cleary, P.W. (2015b), "Novel application of the mesh-free SPH method for modelling thermo-mechanical responses in arc welding", Int. J. Mech. Mater. D., 11(3), 337-355. https://doi.org/10.1007/s10999-014-9279-5
  20. Davison, L. and Stevens, A.L. (1973), "Thermomechanical constitution of spalling elastic bodies", J. Appl. Phys., 44(2), 668-674. https://doi.org/10.1063/1.1662242
  21. Dyka, C.T. and Ingel, R.P. (1995), "An approach for tension instability in smoothed particle hydrodynamics", Comput. Struct., 57(4), 573-580. https://doi.org/10.1016/0045-7949(95)00059-P
  22. Dyka, C.T., Randles, P.W. and Ingel, R.P. (1997), "Stress points for tension instability in SPH", Int. J. Numer. Meth. Eng., 40(13), 2325-2341. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8
  23. Eftekhari, M. and Mohammadi, S. (2015), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", Int. J. Impact Eng. [In Press]
  24. Fagan, T., Das, R., Lemiale, V. and Estrin, Y. (2012), "Modelling of equal channel angular pressing using a mesh-free method", J. Mater. Sci., 47(11), 4514-4519. https://doi.org/10.1007/s10853-012-6296-3
  25. Fahrenthold, E.P. and Yew, C.H. (1995), "Hydrocode simulation of hypervelocity impact fragmentation", Int. J. Impact Eng., 17(1-3), 303-310. https://doi.org/10.1016/0734-743X(95)99856-M
  26. Fang, Z. and Harrison, J.P. (2001), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 111(1), 59-72.
  27. Fang, J., Owens, R.G., Tacher, L. and Parriaux, A. (2006), "A numerical study of the SPH method for simulating transient viscoelastic free surface flows", J. Non-newton Fluid, 139(1-2), 68-84. https://doi.org/10.1016/j.jnnfm.2006.07.004
  28. Fernandez-Mendez, S., Bonet, J. and Huerta, A. (2005), "Continuous blending of SPH with finite elements", Comput. Struct., 83(17-18), 1448-1458. https://doi.org/10.1016/j.compstruc.2004.10.019
  29. Fujiwara, A. (1989), "Experiments and scaling laws for catastrophic collisions", Asteroids Ii, 240-265.
  30. Fujiwara, G. (1994), "Review of fracture mechanics for aircraft structures", Zairyo/J. Soc. Mater. Sci., Japan 43(493), 1188-1194. https://doi.org/10.2472/jsms.43.1188
  31. Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics - Theory and application to non-spherical stars", MNRAS 181(3), 375-389. https://doi.org/10.1093/mnras/181.3.375
  32. Grady, D.E. and Kipp, M.E. (1980), "Continuum modelling of explosive fracture in oil shale", Int. J. Rock Mech. Min., 17(3), 147-157. https://doi.org/10.1016/0148-9062(80)91361-3
  33. Grady, D.E., Kipp, M.E. and Smith, C.S. (1980), "Explosive fracture studies on oil shale", Soc. Petro. Eng. J., 20(5), 349-356. https://doi.org/10.2118/8215-PA
  34. Gray, J.P. and Monaghan, J.J. (2004), "Numerical modelling of stress fields and fracture around magma chambers", J. Volcanol. Geoth. Res., 135(3), 259-283. https://doi.org/10.1016/j.jvolgeores.2004.03.005
  35. Gray, J.P., Monaghan, J.J. and Swift, R.P. (2001), "SPH elastic dynamics", Comput. Method. Appl. M., 190(49-50), 6641-6662. https://doi.org/10.1016/S0045-7825(01)00254-7
  36. Harrison, S. and Cleary, P. (2014), "Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH)", Eur. Food Res. Technol., 238(2), 185-215. https://doi.org/10.1007/s00217-013-2077-8
  37. Hu, S., Zhang, X. and Xu, S. (2015), "Effects of loading rates on concrete double-K fracture parameters", Eng. Fract. Mech., 149, 58-73. https://doi.org/10.1016/j.engfracmech.2015.09.027
  38. Huang, Y., Yang, Z., Ren, W., Liu, G. and Zhang, C. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solids. Struct., 67-68, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002
  39. Imaeda, Y. and Inutsuka, S.i. (2002), "Shear flows in smoothed particle hydrodynamics", Astrophys. J., 569(1), 501-518. https://doi.org/10.1086/339320
  40. Ju, J., Jiang, X. and Fu, X. (2007), "Fracture analysis for damaged aircraft fuselage subjected to blast", Key Eng. Mater., 348-349, 705-708. https://doi.org/10.4028/www.scientific.net/KEM.348-349.705
  41. Karekal, S., Das, R., Mosse, L. and Cleary, P.W. (2011), "Application of a mesh-free continuum method for simulation of rock caving processes", Int. J. Rock Mech. Min., 48(5), 703-711. https://doi.org/10.1016/j.ijrmms.2011.04.011
  42. Kleine, T., La Pointe, P. and Forsyth, B. (1997), "Realizing the potential of accurate and realistic fracture modeling in mining", Int. J. Rock Mech. Min., 34(3-4), 661. https://doi.org/10.1016/S1365-1609(97)00158-5
  43. Kulasegaram, S., Bonet, J., Lewis, R.W. and Profit, M. (2003), "High pressure die casting simulation using a Lagrangian particle method", Commun. Numer. Meth. En., 19(9), 679-687. https://doi.org/10.1002/cnm.633
  44. Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. M., 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
  45. Lemiale, V., King, P.C., Rudman, M., Prakash, M., Cleary, P.W., Jahedi, M.Z. and Gulizia, S. (2014), "Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics", Surf. Coat. Tech., 254, 121-130. https://doi.org/10.1016/j.surfcoat.2014.05.071
  46. Libersky, L.D. and Petschek, A.G. (1990), "Smooth particle hydrodynamics with strength of materials", Advances in the Free-Lagrange Method, Springer, Berlin, Germany.
  47. Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Meth. Eng., 38(10), 1655-1679. https://doi.org/10.1002/nme.1620381005
  48. Liu, Z.S., Swaddiwudhipong, S. and Koh, C.G. (2004), "High velocity impact dynamic response of structures using SPH method", Int. J. Comput. Eng. Sci., 5(2), 315-326. https://doi.org/10.1142/S146587630400240X
  49. Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82, 1013-1024. https://doi.org/10.1086/112164
  50. Melosh, H.J. (1985), "Ejection of rock fragments from planetary bodies", Geology, 13(2), 144-148. https://doi.org/10.1130/0091-7613(1985)13<144:EORFFP>2.0.CO;2
  51. Melosh, H.J. and Collins, G.S. (2005), "Meteor crater formed by low-velocity impact", Nature, 434(7030), 157. https://doi.org/10.1038/434157a
  52. Melosh, H.J., Ryan, E.V. and Asphaug, E. (1992), "Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts", J. Geophys. Res., 97(E9), 14735-14759. https://doi.org/10.1029/92JE01632
  53. Mitchell, R.J. (1993), "Physical modelling of fracture and flow in mine backfills", Proceedings of the International Congress on Mine Design, Kingston, ON, Canada, August.
  54. Mok, H., Chiu, W.K., Peng, D., Sowden, M. and Jones, R. (2007), "Rail wheel removal and its implication on track life: a fracture mechanics approach", Theor. Appl. Fract. Mec., 48(1), 21-31. https://doi.org/10.1016/j.tafmec.2007.04.001
  55. Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Ann. Rev. Astron. Astrophys., 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  56. Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406. https://doi.org/10.1006/jcph.1994.1034
  57. Monaghan, J.J. (2000), "SPH without a tensile instability", J. Comput. Phys., 159(2), 290-311. https://doi.org/10.1006/jcph.2000.6439
  58. Monaghan, J.J. (2005), "Smoothed particle hydrodynamics", Rep. Prog. Phys., 68, 1703-1759. https://doi.org/10.1088/0034-4885/68/8/R01
  59. Morrison, R.D. and Cleary, P.W. (2004), "Using DEM to model ore breakage within a pilot scale sag mill", Miner. Eng., 17(11-12), 1117-1124. https://doi.org/10.1016/S0892-6875(04)00181-5
  60. Napier, J.A.L. (1990), "Modelling of fracturing near deep level gold mine excavations using a displacement discontinuity approach", International Conference on Mechanics of Jointed and Faulted Rock, Vienna, Austria
  61. Pierazzo, E. and Melosh, H.J. (2000), "Understanding oblique impacts from experiments, observations, and modeling", Ann. Rev. Inc., 28, 141-167, Palo Alto, CA, USA.
  62. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock. Mech. Min., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  63. Prakash, M. and Cleary, P. (2015), "Modelling highly deformable metal extrusion using SPH", Comput. Particle Mech., 2(1), 19-38. https://doi.org/10.1007/s40571-015-0032-0
  64. Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Method. Eng., 48(10), 1445-1462. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
  65. Rezaie, F. and Farnam, S.M. (2015), "Fracture mechanics analysis of pre-stressed concrete sleepers via investigating crack initiation length", Eng. Fail. Anal., 58(Part 1), 267-280. https://doi.org/10.1016/j.engfailanal.2015.09.007
  66. Selman, E., Ghiami, A. and Alver, N. (2015), "Study of fracture evolution in FRP-strengthened reinforced concrete beam under cyclic load by acoustic emission technique: An integrated mechanical-acoustic energy approach", Constr. Build. Mater., 95, 832-841. https://doi.org/10.1016/j.conbuildmat.2015.07.162
  67. Sharir, Y., Stone, D.H. and Pellini, W.S. (1982), "Fracture analysis of cast steel components in rail vehicles", Gaitherburg, MD, USA, NBS, Washington, DC, USA.
  68. Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, C.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock Mech. Min., 11(8), 303-317. https://doi.org/10.1016/0148-9062(74)91760-4
  69. Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray ${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35. https://doi.org/10.1016/j.engfracmech.2015.08.010
  70. Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995), "Smoothed particle hydrodynamics stability analysis", J. Comput. Phys., 116(1), 123-134. https://doi.org/10.1006/jcph.1995.1010
  71. Tait, R.B. and Emslie, C. (2005), "The use of fracture mechanics in failure analysis in the offshore diamond mining industry", Eng. Fail. Anal., 12(6 SPEC ISS), 893-905. https://doi.org/10.1016/j.engfailanal.2004.12.014
  72. Takabatake, H., Nonaka, T. and Tanaki, T. (2005), "Numerical study of fracture propagating through column and brace of ashiyahama residential building in Kobe Earthquake", Struct. Des. Tall Spec., 14(2), 91-105. https://doi.org/10.1002/tal.265
  73. Thorne, B.J., Hommert, P.J. and Brown, B. (1990), "Experimental and computational investigation of the fundamental mechanisms of cratering", 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, Australia.
  74. Uetani, K. and Tagawa, H. (1999), "Earthquake response analysis of steel building frames considering brittle fractures at member-ends", Structures Congress - Proceedings, 406-409.
  75. Vidal, Y., Bonet, J. and Huerta, A. (2007), "Stabilized updated lagrangian corrected SPH for explicit dynamic problems", Int. J. Numer. Meth. Eng., 69(13), 2687-2710. https://doi.org/10.1002/nme.1859
  76. Vignjevic, R., Campbell, J. and Libersky, L. (2000), "A treatment of zero-energy modes in the smoothed particle hydrodynamics method", Comput. Method. Appl. M., 184(1), 67-85. https://doi.org/10.1016/S0045-7825(99)00441-7
  77. Wang, L., Brust, F.W. and Atluri, S.N. (1997), "Elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture under WFD conditions in aircraft structures. Part II: Fracture and the T*-integral parameter", Comput. Mech., 19(5), 370-379. https://doi.org/10.1007/s004660050185
  78. Wen, Z., Shiyue, W. and Wancheng, Z. (2005), "The failure and falling of the rock mass in the underground mining", Key Eng. Mater., 297-300, 2586-2591. https://doi.org/10.4028/www.scientific.net/KEM.297-300.2586
  79. Wilkins, J.L. (1964), "Calculation of elastic-plastic flow", Methods of Computational Physics, New York, Academic Press, 8, 211-263.
  80. Wingate, C.A. and Fisher, H.N. (1993), "Strength modeling in SPHC", Los Alamos National Laboratory.
  81. Yu, K., Yu, J., Lu, Z. and Chen, Q. (2015), "Determination of the softening curve and fracture toughness of high-strength concrete exposed to high temperature", Eng. Fract. Mech., 149, 156-169. https://doi.org/10.1016/j.engfracmech.2015.10.023