DOI QR코드

DOI QR Code

상태 관측기 설계 기법을 적용한 이온성 고분자 금속 복합체의 전압 생성 특성 모델링

State Observer Based Modeling of Voltage Generation Characteristic of Ionic Polymer Metal Composite

  • Lee, Hyung-Ki (Department of Control and Instrumentation Engineering, Pukyong National University) ;
  • Park, Kiwon (Department of Green Automobile Engineering, Youngsan University) ;
  • Kim, Myungsoo (Department of Mechanical Design Engineering, Youngsan University)
  • 투고 : 2015.11.19
  • 심사 : 2015.12.21
  • 발행 : 2015.12.31

초록

이온성 고분자 복합물인 IPMC(Ionic Polymer Metal Composite)는 부드러운 고분자 필름의 양면에 백금으로 구성된 전극층이 부착된 형태로 구성되어 있으며, 외부 물리적 자극에 대응하여 전기적 에너지를 발생시키는 특성을 가지고 있다. 본 논문에서는 IPMC의 굽힘에 대응하여 생성되는 전압을 예측할 수 있는 회로 모델을 제안하였다. 모델의 내부는 IPMC의 물리적인 특성을 묘사하는 전기 소자들로 구성되어 있으며, 실제 측정된 출력 전압과 시뮬레이션 출력 전압 사이의 RMS(Root Mean Square) 오차가 최소화 되도록 파라미터들의 값이 선정되었다. 이어서, 회로 모델의 관측기를 극점 배치 기법을 사용하여 설계하였으며 관측기로부터의 출력 전압 시뮬레이션의 결과 실제 전압 신호와의 오차가 줄어듦을 확인하였다. 또한, 상태 관측기 설계 기법이 측정된 출력 전압으로부터 입력 굽힘 각도를 추정하는 역 모델의 설계에도 적용되었으며 설계된 역 모델이 입력 각도를 큰 오차 없이 추정함을 검증하였다.

Ionic Polymer-Metal Composite (IPMC) consisting of soft membrane plated by platinum electrode layers on both surfaces generates electric energy when subjected to various mechanical stimuli. The paper proposes a circuit model that describes the physical composition of IPMC to predict the voltage generation characteristic corresponding to bending motion. The parameter values in the model are identified to minimize the RMS error between the real and simulated outputs. Following the design of IPMC circuit model, the state observer of the model is designed by using pole placement technique which improves the model accuracy. State observer design technique is also applied to find the inverse model which estimates the input bending angles from the output voltage data. The results show that the inverse model estimates input bending angles fairly well enough for the further applications of IPMC not only as an energy harvester but also as a bending sensor.

키워드

참고문헌

  1. Sodano, H.A. and Inman, D.J., "Generation and Storage of Electricity from Power Harvesting Devices," Journal of Intelligent Material Systems and Structures, Vol. 16, No. 1, 2005, pp. 67-75. https://doi.org/10.1177/1045389X05047210
  2. Nemat-Nasser, S., "Micromechanics of Actuation of Ionic Polymer-Metal Composites," Journal of Applied Physics, Vol. 19, No. 1, 2002, pp. 2889-2915.
  3. Aureli, M., Prince, C., Porfiri, M., and Peterson, S. D., "Energy Harvesting from Base Excitation of Ionic Polymer Metal Composites in Fluid Environments," Smart Materials and Structures, Vol. 19, No. 1, 2010, 015003. https://doi.org/10.1088/0964-1726/19/1/015003
  4. Giacomello, A. and Porfiri, M., "Underwater Energy Harvesting from A Heavy Flag Hosting Ionic Polymer Metal Composites," Journal of Applied Physics, Vol. 109, No. 8, 2011, pp. 84903-84903. https://doi.org/10.1063/1.3569738
  5. Brufau-Penella1, J., Puig-Vidal1, M., Giannone, P., Graziani, S., and Strazzeri, S., "Characterization of the Harvesting Capabilities of An Ionic Polymer Metal Composite Device," Smart Materials and Structures, Vol. 17, No. 1, 2008, 15009. https://doi.org/10.1088/0964-1726/17/01/015009
  6. Kim, H.I., Kim, D.K., and Han, J.H., "A Study on Mechanical Properties of IPMC Actuators," Journal of the Korean Society for Composite Materials, Vol. 20, No. 3, 2007, pp. 50-54.
  7. Biddiss, E. and Chau, T., "Electroactive Polymeric Sensors in Hand Prostheses: Bending Response of An Ionic Polymer Metal Composite," Medical Engineering & Physics, Vol. 28, No. 6, 2006, pp. 568-578. https://doi.org/10.1016/j.medengphy.2005.09.009
  8. Farinholt, K. and Leo, D., "Modeling of Electromechanical Charge Sensing in Ionic Polymer Transducers," Mechanics of Materials, Vol. 36, No. 5, 2004, pp. 421-433. https://doi.org/10.1016/S0167-6636(03)00069-3
  9. Chen, Z., Tan, X., Will, A., and Ziel, C., "A Dynamic Model for Ionic Polymer-Metal Composite Sensors," Smart Materials and Structures, Vol. 16, No. 4, 2007, pp. 1477-1488. https://doi.org/10.1088/0964-1726/16/4/063
  10. Paquette, W.J., Kim, J.K., Nam, J.D., and Tak, Y.S., "An Equivalent Circuit Model for Ionic Polymer-Metal Composites and Their Performance Improvement by A Clay-Based Polymer Nano-Composite Technique," Journal of Intelligent Material Systems and Structures, Vol. 14, 2003, pp. 633-642. https://doi.org/10.1177/104538903038024
  11. http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_Prep-Procedure.htm