DOI QR코드

DOI QR Code

Combustion Characteristics of Hinoki Cypress Louver after Pressure Impregnation with Boric Acid, Borax and Ammonium Phosphate

붕사, 붕산 및 인산암모늄을 가압 함침한 편백 루버의 연소특성

  • Park, Hyung-Ju (Dept. of Firefighting & Safety Management, Howon University)
  • 박형주 (호원대학교 소방안전관리학과)
  • Received : 2015.06.16
  • Accepted : 2015.11.18
  • Published : 2015.12.31

Abstract

In this study, the combustion characteristics of Hinoki Cypress Louver were measured after performing pressure impregnation with aqueous solution of boric acid, borax, and ammonium phosphate. The characteristics measured include ignition time, critical heat flux, and mass loss rate by incident hear flux (25, 30 and $50kW/m^2$). The samples used for the test were $100{\times}100{\times}10mm$, and the 5 min variation for each incident heat flux was measured 3 times. The results show that the ignition time for incident heat flux of $25kW/m^2$ showed a delay effect of 17.4 to 21.3% except for Type C-H. There was no significant difference at 35 and $50kW/m^2$ in the average mass loss rate in Types A-H and D-H, which had lower rates than Type N-H, which was predicted to be higher than that of Type N-H ($10.7kW/m^2$) by 38.22 to 60.46%. It is thus expected that at the time of initial primary fire, there would be a delay effect against fire spread.

본 논문은 편백 루버에 붕산, 붕사 및 인산암모늄 수용액을 가압함침 후 외부 복사열원(25, 30 및 $50kW/m^2$)에 따른 점화시간, 임계 열유속 및 질량감소속도 등의 연소특성을 측정하였다. 실험에 사용된 시료의 크기는 $100{\times}100{\times}10mm$이며, 각 외부 복사열원에서 5분간 변화를 3회 반복 측정하였다. 연구결과, $25kW/m^2$의 외부 복사열원에 있어서 착화시간은 Type C-H를 제외하고는 17.4~21.3%의 지연효과를 나타낸 반면 35 및 $50kW/m^2$에서는 큰 차이가 없음을 알 수 있었으며, 평균질량감소속도는 Type A-H와 Type D-H에서 Type N-H보다 낮게 측정되었다. 또한, 외부 복사열원에 따른 착화시간으로부터 임계 열유속은 $14.79{\sim}17.17kW/m^2$$10.7kW/m^2$인 Type N-H보다 38.22~60.46% 높게 예측됨에 따라 초기 화재시 화재확대에 대한 지연효과가 있을 것으로 예상된다.

Keywords

References

  1. H. J. Park and S. M. Lee, "Combustion Characteristics of Spruce Wood by Pressure Impregnation with Waterglass and Carbon Dioxide", J. Kor. Inst. Fire Sci. Eng., Vol. 26, No. 44, pp. 18-23 (2012). https://doi.org/10.7731/KIFSE.2012.26.4.018
  2. H. J. Park, K. H. Oh, E. S. Kim and H. Kim, "A Study on Char Characteristics of Fire Retardant Treated Douglas Fir", J. of Korean Institute of Fire Sci. & Eng., Vol. 19, No. 2, pp. 105-110 (2005).
  3. H. J. Park, M. Wen, S. H. Cheon, J. W. Hwang, and S. W. Oh, "Flame Retardant Performance of Wood Treated with Flame Retardant Chemicals", J. of the Korean Wood Science and Technology, Vol. 40, No. 5, pp. 311-318 (2012). https://doi.org/10.5658/WOOD.2012.40.5.311
  4. D. W. Son, M. R. Kang, J. I. Kim and S. B. Park, "Fire Performance of the Wood Treated with Inorganic Fire Retardants", J. of the Korean Wood Science and Technology, Vol. 40, No. 5, pp. 335-342 (2012). https://doi.org/10.5658/WOOD.2012.40.5.335
  5. J. Z. Xu, M. Gao, H. Z. Guo, X. I. Liu, Z. Li, H. Wang and C. M. Tian, "Study on the Thermal Degradation of Celluloseic Fiber Treated with Flame Retardants", J. Fire Sciences, Vol. 20, pp. 227-235 (2002). https://doi.org/10.1177/0734904102020003905
  6. O. Grexa and H. Lubke, "Flammability Parameters of Wood Tested on a Cone Calorimeter", Polymer Degradation and Stability, Vol. 74, pp. 427-432 (2001). https://doi.org/10.1016/S0141-3910(01)00181-1
  7. B. Garba, "Effects of Zinc Borate as Flame Retardant Formulation on Some Tropical Woods", Polymer Degradation and Stability, Vol. 64, pp. 517-522 (1999). https://doi.org/10.1016/S0141-3910(98)00136-0
  8. D. S. Baker, "Wood in Fire, Flame Spread and Flame Retardant Treatments", Chemistry and Industry, Vol. 18, pp. 485-490 (1981).
  9. H. J. Park, "A Study on the Burning Rate of Fire Retardant Treated Wood", J. of the KOSOS, Vol. 22, No. 6, pp. 46-54 (2007).
  10. J. M. Choi, "A Study on Combustion Characteristics of Fire Retardant Treated Pinus Densiflora and Pinus Koraiensis", J. of the Korean Wood Science and Technology, Vol. 39, No. 3, pp. 244-251 (2011). https://doi.org/10.5658/WOOD.2011.39.3.244