DOI QR코드

DOI QR Code

느타리버섯 수확후배지로부터 분리한 Bacillus subtilis CA105의 특성

Isolation and Characterization of Bacillus subtilis CA105 from Spent Mushroom (Pleurotus ostreatus) Substrates

  • 김혜수 (경남과학기술대학교 제약공학과) ;
  • 김철환 (경남과학기술대학교 제약공학과) ;
  • 권현숙 (한국한방산업진흥원) ;
  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 공원식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Kim, Hye Soo (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Chul Hwan (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kwon, Hyun Sook (Korea Promotion Institute for Traditional Medicine Industry) ;
  • Lee, Chan-Jung (Mushroom Research Division, International Institute of Horticultural & Herhal Science, RDA) ;
  • Kong, Won-Sik (Mushroom Research Division, International Institute of Horticultural & Herhal Science, RDA) ;
  • Cho, Soo Jeong (Dept. of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.11.12
  • 심사 : 2015.12.21
  • 발행 : 2015.12.31

초록

Cellulase와 xylanase 분비능이 우수한 부숙촉진 세균을 분리하기 위하여 진주시 집현면 소재의 느타리버섯 재배농장으로부터 느타리버섯 수확후배지를 수집하였다. 느타리버섯 수확후배지로부터 19종의 균주를 분리하였으며 이 중 cellulase와 xylanase을 동시에 분비하는 균주를 최종 선발하여 CA105로 명명하였다. Bacillus ID kit와 VITEK 2 system를 이용하여 분리균 CA105의 생화학적 특성을 조사한 결과에서도 분리균 CA105은 B. subtilis와 유사한 특징을 나타내었으며 16S rRNA 염기서열 분석 결과에서는 B. subtilis와 98.9%의 상동성을 나타내었다. 이와 같은 결과를 종합하여 분리균 CA105은 Bacillus subtilis CA105로 동정되었다. 분리균이 분비하는 cellulase와 xylanase 활성은 분리균이 증식함에 따라 대수증식기 중반부터 급격히 증가하였고 정지기에 진입하면 효소활성이 더 이상 증가하지 않는 것으로 나타났다.

In order to isolate compost-promoting bacteria with high activity of cellulase and xylanase, spent mushroom substrates with sawdust were collected from mushroom cultivation farm, Jinju, Gyeongnam in Korea. Among of the isolates, one strain, designated CA105 was selected by agar diffusion method. The strain CA105 was identified as members of the Bacillus subtilis by biochemical characteristics using VITEK 2 system. Comparative 16S rRNA gene sequence analysis showed that isolate CA105 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rRNA gene sequence similarity of 98.9%. On the basis of its physiological properties, biochemical characteristics and phylogenetic distinctiveness, isolate CA105 was classified within the genus Bacillus subtilis, for which the name Bacillus subtilis CA105 is proposed. The cellulase and xylanase activity of B. subtilis CA105 was slightly increased according to bacterial population from exponential phase to stationary phase in growth curve for Bacillus sp. CA105.

키워드

참고문헌

  1. Han HS, Woo S, Kim DK, Heo BG, Lee KD. 2010. Effects of composts on the growth, yield and effective components of Turmeric (Curcuma longa L.). Korean J Environ Agri. 29:138-145. https://doi.org/10.5338/KJEA.2010.29.2.138
  2. Hong JH, Park KJ. 2009. Composting characteristics of food waste-poultry manure mixture inoculated with effective microorganisms. J Lives Hous Env. 15:59-68.
  3. Jeong JY, Jung KY, Nam SS. 1999. Evaluation of qualities with or without microbial inoculation for food waste composting. Korean J Environ Agri. 18:280-286.
  4. Kim DJ, Shin HJ, Min BH, Yoon KH. 1995. Isolation of a Thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor J Appl Microbial biotechnol. 23:304-310.
  5. Kim JY, Heo SH, Hong JH. 2004. Isolation and characterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-810. Kor J Appl Microbial biotechnol. 40:139-146.
  6. Kim TI, Han JD, Jeon BS, Ha SW, Yang CB, Kim MK. 1999. Isolation and characterization of bacillus subtilis CH-10 secreting cellulase from catttle manure. J Microbial. 35:277-282.
  7. Lee JH, Choi SH. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J Microbiol Biotechnol. 16:1856-1861.
  8. Miller GL, Blum R, Glennon WE, Burton AL. 1960. Measurement of carboxymethyl cellulase activity. Ana Biochem. 2:127-132.
  9. Nakano MM, Marahiel MA, Zuber P. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol. 170:5662-5668. https://doi.org/10.1128/jb.170.12.5662-5668.1988
  10. Regine MD, Ptak M, Peypoux F, Michel G. 1985. Pore-forming properties of iturin A: a lipopeptide antibiotic. Biochim Biophys Acta. 815:405-409. https://doi.org/10.1016/0005-2736(85)90367-0
  11. Roongsawang T, Kameyama T, Haruki M, Morikawa M. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastain and surfactin. Extremophiles 6:499-506. https://doi.org/10.1007/s00792-002-0287-2
  12. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 50:1-17. https://doi.org/10.1139/w03-076
  13. Seki T, Chung CK, Mikami H, Oshima Y. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int J Syst Bacteriol. 28:182-189. https://doi.org/10.1099/00207713-28-2-182
  14. Shin PG, Cho SJ. 2011. Cellulase and Xylanase Activity of Compost-promoting Bacteria Bacillus sp. SJ21. Korean J Soil Sci Fert. 44:836-840. https://doi.org/10.7745/KJSSF.2011.44.5.836
  15. Tchobanoglous G, Theisen H, Vigil SA. 1993. Integrated solid waste management, p. 689-691 In: Engineering, principles and management issues. McGraw-Hill Inter- national Editions.
  16. Vanittanakam N, Loeffler W. 1986. Fengycin-a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F29-3. J Antibio Tokyo 39:888-901. https://doi.org/10.7164/antibiotics.39.888
  17. Williams BC, McMullan JT, McCahey S. 2001. An initial assessment of spent mushroom compost as apotential energy feedstock. Biores Technol. 79:227-230. https://doi.org/10.1016/S0960-8524(01)00073-6