DOI QR코드

DOI QR Code

Secondary Metabolites from Enzymatic Oxidation of Caffeic Acid with Pancreatic Lipase Inhibitory Activity

카페인산의 효소적 산화반응으로부터 췌장 지방분해효소 저해 물질의 분리

  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Myoung Kwon (Department of Physical Therapy, Daegu University)
  • 김태훈 (대구대학교 식품공학과) ;
  • 김명권 (대구대학교 물리치료학과)
  • Received : 2015.09.01
  • Accepted : 2015.10.08
  • Published : 2015.12.31

Abstract

Pancreatic lipase is a potential therapeutic target for the treatment of diet-induced obesity in humans. As part of our continuing search for novel bioactive compounds, the convenient enzymatic transformation of caffeic acid into neolignans as well as related oxidized-products enhanced pancreatic lipase inhibitory activity. Enzymatic transformation of caffeic acid (1) using polyphenol oxidase originating from Korean pear yielded four oxidized metabolites, which were identified by different spectroscopic techniques ($^1H$,$^{13}C$ NMR, DEP/T, $^1H-^1H$ COSY, HMBC, HMQC, and NOESY). The anti-obesity efficacy of caffeic acid reactant was tested by in vitro porcine pancreatic lipase assay. All tested samples showed dose-dependent pancreatic lipase inhibitory activities. Four oxidative products including phellinsin A (2), caffeicinic acid (3), isocaffeicinic acid (4), and 7,8-erythro-caffeicin (5) were isolated and identified. The major metabolites (2~5) were evaluated for their pancreatic lipase inhibitory activity, and oxidized-products (2~3) improved potency against pancreatic lipase when compared to original caffeic acid. This result suggested that the neolignans isolated from oxidative transformation of caffeic acid might be beneficial in the treatment of obesity and relevant diseases, and the convenient enzymatic transformation by polyphenol oxidase may be a valuable method for structural modification and enhancement of activity.

천연식물에 광범위하게 존재하는 대표적인 페닐프로파노이드 화합물인 caffeic acid에 대해 배 유래의 polyphenol oxidase로 산화반응을 수행하여 상대적으로 높은 pancreatic lipase 저해 활성($IC_{50}$; $161.2{\pm}2.8{\mu}g/mL$)을 확인하였으며, 이는 caffeic acid와 비교하였을 경우 활성이 상승함을 알 수 있었다. Caffeic acid 산화반응물에 대해서 $C_{18}$ 겔을 활용한 column chromatography를 수행하여 4종의 리그난 화합물을 분리하였고, 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석 및 표품과의 HPLC 직접 비교를 통하여 phellinsin A(2), caffeicinic acid(3), isocaffeicinic acid(4), 7,8-erythro-caffeicin(5)으로 동정하였다. 이들 화합물중 phellinsin A(2)는 $IC_{50}$ 값이 $66.3{\pm}2.6{\mu}M$로 가장 강한 효능을 나타내었으며, 다음으로 caffeic acid 2분자의 산화 결합을 통해 생합성된 caffeicinic acid(3)의 $IC_{50}$ 값이 $109.6{\pm}3.7{\mu}M$의 저해능을 나타내었다. 배에 존재하는 polyphenol 산화효소에 의해 생합성된 caffeic acid 이량체가 pancreatic lipase 저해 활성 물질임을 확인하였으며, 이들 활성은 caffeic acid가 결합 양상에 따른 화합물의 구조에 따라 다름이 시사되었다. 향후 이들 활성물질의 활성 기작에 대한 연구가 필요하며 본 연구 결과는 보다 우수한 pancreatic lipase 저해능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을 뿐만 아니라 항비만 물질의 상업화를 위한 기초자료로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bray GA, Popkin BM. 1998. Dietary fat intake dose affect obesity. Am J Clin Nutr 68: 1157-1173. https://doi.org/10.1093/ajcn/68.6.1157
  2. Bray GA, Popkin BM. 1999. Dietary fat affects obesity rate. Am J Clin Nutr 70: 572-573. https://doi.org/10.1093/ajcn/70.4.572
  3. Levinson ML. 1977. Obesity and health. Prev Med 6: 172-180. https://doi.org/10.1016/0091-7435(77)90016-0
  4. Rexrode KM, Manson JE, Hennekens CH. 1996. Obesity and cardiovascular disease. Curr Opin Cardiol 11: 490-495. https://doi.org/10.1097/00001573-199609000-00007
  5. Sjostrom LV. 1992. Morbidity of severely obese subjects. Am J Clin Nutr 55: 508S-515S. https://doi.org/10.1093/ajcn/55.2.508s
  6. Bitou N, Ninomiya M, Tsujita T, Okuda H. 1999. Screening of lipase inhibitors from marine algae. Lipids 34: 441-445. https://doi.org/10.1007/s11745-999-0383-7
  7. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, von Bergmann K, Strobel W, Sjostrom L, van der Veen EA. 1995. Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obes Relat Metab Disord 19: 221-226.
  8. Hadvary P, Lengsfeld H, Wolfer H. 1988. Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J 256: 357-361. https://doi.org/10.1042/bj2560357
  9. Collins P, Williams G. 2001. Drug treatment of obesity: from past failures to future successes?. Br J Clin Pharmacol 51: 13-25.
  10. Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S. 2000. Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obes Relat Metab Disord 24: 758-764. https://doi.org/10.1038/sj.ijo.0801222
  11. Kim HY, Kang MH. 2005. Screening of Korean medicinal plants for lipase inhibitory activity. Phytother Res 19: 359-361. https://doi.org/10.1002/ptr.1592
  12. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH. 2010. Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules 15: 8251-8259. https://doi.org/10.3390/molecules15118251
  13. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH. 2010. Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv 17: 727-732.
  14. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH. 2013. Radiolytic transfromation of rotenone with potential anti-adipogenic activity. Bioorg Med Chem Lett 23: 1099-1103. https://doi.org/10.1016/j.bmcl.2012.12.003
  15. Huang MT, Smart RC, Wong CQ, Conney AH. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48: 5941-5946.
  16. Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP. 1988. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res 83: 186-190.
  17. Gupta P, Akanksha, Siripurapu KB, Ahmad A, Palit G, Arora A, Maurya R. 2007. Anti-stress constituents of Evolvulus alsinoides: an ayurvedic crude drug. Chem Pharm Bull 55: 771-775. https://doi.org/10.1248/cpb.55.771
  18. Pascual C, Gonzalez R, Torricella RG. 1994. Scavenging action of propolis extract against oxygen radicals. J Ethnopharmacol 41: 9-13. https://doi.org/10.1016/0378-8741(94)90052-3
  19. Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky JA, Huang MT, Ferraro T, Conney AH, Grunberger D. 1993. Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Res 53: 1255-1261.
  20. Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V, Nakanishi K. 1988. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44: 230-232. https://doi.org/10.1007/BF01941717
  21. Kasai H, Fukada S, Yamaizumi Z, Sugie S, Mori H. 2000. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 38: 467-471. https://doi.org/10.1016/S0278-6915(00)00014-4
  22. Li SY, Chang CQ, Ma FY, Yu CL. 2009. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-alpha in golden hamsters fed on high fat diet. Biomed Environ Sci 22: 122-129. https://doi.org/10.1016/S0895-3988(09)60034-9
  23. Kim TH, Kim JK, Ito H, Jo C. 2011. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett 21: 1512-1514. https://doi.org/10.1016/j.bmcl.2010.12.122
  24. Fujimoto A, Shingai Y, Nakamura M, Maekawa T, Sone Y, Masuda T. 2010. A novel ring-expanded product with enhanced tyrosinase inhibitory activity from classical Fecatalyzed oxidation of rosmarinic acid, a potent antioxidative Lamiaceae polyphenol. Bioorg Med Chem Lett 20: 7393-7396. https://doi.org/10.1016/j.bmcl.2010.10.040
  25. Kim TJ, Silva JL, Jung YS. 2011. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem 126: 116-120. https://doi.org/10.1016/j.foodchem.2010.10.086
  26. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS. 2007. Development of inhibitors against lipase and $\alpha$-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett 276: 93-98. https://doi.org/10.1111/j.1574-6968.2007.00917.x
  27. Hwang EI, Yun BS, Kim YK, Kwon BM, Kim HG, Lee HB, Jeong WJ, Kim SU. 2000. Phellinsin A, a novel chitin synthases inhibitor produced by Phellinus sp. PL3. J Antibiot 53: 903-911. https://doi.org/10.7164/antibiotics.53.903
  28. Sousa EP, Silva AMS, Pinto MMM, Pedro MM, Cerqueira FAM, Nascimento MSJ. 2002. Isomeric kielcorins and dihydroxyxanthones: Synthesis, structure elucidation, and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in vitro. Helv Chim Acta 85: 2862-2876. https://doi.org/10.1002/1522-2675(200209)85:9<2862::AID-HLCA2862>3.0.CO;2-R
  29. Bae JS, Kim TH. 2012. Enzymatic transformation of caffeic acid with enhanced cyclooxygenase-2 inhibitory activity. Bioorg Med Chem Lett 22: 793-796. https://doi.org/10.1016/j.bmcl.2011.12.072
  30. Birari RB, Bhutani KK. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 12: 879-889. https://doi.org/10.1016/j.drudis.2007.07.024
  31. Matsuda H, Asao Y, Nakamura S, Hamao M, Sugimoto S, Hongo M, Pongpiriyadacha Y, Yoshikawa M. 2009. Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon. Chem Pharm Bull 57: 487-494. https://doi.org/10.1248/cpb.57.487
  32. Ahn JH, Shin EJ, Liu Q, Kim SB, Choi KM, Yoo HS, Hwang BY, Lee MK. 2012. Lignan derivatives from Fraxinus rhynchophylla and inhibitory activity on pancreatic lipase. Nat Prod Sci 18: 116-120.

Cited by

  1. Quality Characteristics of Aronia Vinegar Imparted by Varying Concentrations of Seed Vinegar vol.50, pp.5, 2021, https://doi.org/10.3746/jkfn.2021.50.5.522