DOI QR코드

DOI QR Code

Antimelanogenic Effect of Purpurogallin in Murine Melanoma Cells

마우스 흑색종세포에서 Purpurogallin의 멜라닌 생성 억제 효과

  • Kim, Han-Hyuk (Advanced Medical Fusion Textile Center, Gyeongbuk Technopark Foundation) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 김한혁 (경북테크노파크 첨단메디컬융합섬유센터) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2015.08.10
  • Accepted : 2015.09.07
  • Published : 2015.12.31

Abstract

Melanin is one of the most important factors affecting skin color. Melanogenesis is the bioprocess of melanin production by melanocytes in the skin and hair follicles and is mediated by several enzymes, such as tyrosinase, tyrosinase related protein (TRP)-1, and TRP-2. Convenient enzymatic transformation of the simple phenol pyrogallol with polyphenol oxidase originating from pear to an oxidative product, purpurogallin, was efficient. The structure of the pyrogallol oxidation product was identified on the basis of spectroscopic methods. The biotransformation product purpurogallin showed significant inhibitory effects against both melanin synthesis and tyrosinase activity in a dose-dependent manner in B16 melanoma cells. In addition, purpurogallin significantly attenuated melanin production by inhibiting TRP-1, and TRP-2 expression through modulation of their corresponding transcription factors, and microphthalamia- associated transcription factor in B16 cells. Consequently, purpurogallin derived from convenient enzymatic transformation of pyrogallol might be a beneficial material for reducing skin hyperpigmentation.

천연 미백소재 개발과 관련하여 많은 연구들이 멜라닌 합성저해 및 활성 메커니즘을 규명하는 데 초점이 맞춰졌으며, 이러한 이유로 tyrosinase 저해제 개발이 다양하게 이루어져 왔다. 본 연구는 배 유래의 polyphenol oxidase를 이용하여 천연에 존재하는 단순 폴리페놀인 pyrogallol의 산화 축합반응을 유도하여 purpurogallin을 효율적으로 생합성하였으며, 본 화합물에 대해서 미백 활성을 평가하였다. 먼저 MTT assay를 통해 세포독성이 없는 농도구간을 설정하였으며, purpurogallin은 $25{\mu}M$ 농도의 melanoma 세포 내에서 tyrosinase 활성을 20% 이상 저해하는 것을 확인하였다. 또한 $25{\mu}M$의 시험 농도에서 purpurogallin은 약 20% 이상의 melanin 생합성 저해 활성을 나타내었다. 미백 관련 전사인자인 MITF, TRP-1, TRP-2, tyrosinase의 단백질 발현을 측정한 결과, 본 화합물은 B16F10 melanoma 세포에서 tyrosinase, TRP-1과 TRP-2의 단백질 생합성을 두 추출물 모두 억제하는 것을 확인하였다. Tyrosinase, TRP-1과 TRP-2의 발현을 조절하는 전사인자로는 MITF가 관여하는 것으로 알려져 있으며, 실제로 MITF는 melanin 생성과 관련된 여러 유전자의 발현을 조절하는 데 중요한 작용을 하고 있다. 따라서 purpurogallin은 melanin 생성과 관련된 중요한 세 가지 단백질의 생합성을 전사단계에서 조절 전사인자인 MITF의 단백질 발현을 억제하는 효과가 있음을 확인하였다. 이상의 결과로부터 멜라닌 생합성에 있어서 상위 신호단계에 있는 전사인자 MITF의 활성을 억제함으로써 하위 신호전달 과정을 억제하는 것임을 시사하며, 향후 추가적인 검증작업을 통해 화장품 소재화가 가능할 것으로 판단된다.

Keywords

References

  1. Agar N, Young AR. 2005. Melanogenesis: a photoprotective response to DNA damage?. Mutat Res 571: 121-132. https://doi.org/10.1016/j.mrfmmm.2004.11.016
  2. Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. 1995. Tyrosinase: a comprehensive review of its mechanism. Biochim Biphys Acta 1247: 1-11. https://doi.org/10.1016/0167-4838(94)00204-T
  3. Hearing VJ. 1999. Biochemical control of melanogenesis and melanosomal organization. J Investig Dermatol Symp Proc 4: 24-28. https://doi.org/10.1038/sj.jidsp.5640176
  4. del Marmol V, Beermann F. 1996. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 381: 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  5. Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. 1998. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res 11: 206-212. https://doi.org/10.1111/j.1600-0749.1998.tb00731.x
  6. Curto EV, Kwong C, Hermersdorfer H, Glatt H, Santis C, Virador V, Hearing VJ Jr, Dooley TP. 1992. Inhibitors of mammalian melanocytes tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57: 663-672.
  7. Desmedt B, Rogiers V, Courselle P, De Beer JO, De Paepe K, Deconinck E. 2013. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents. J Pharm Biomed Anal 83: 82-88. https://doi.org/10.1016/j.jpba.2013.04.020
  8. Li Y, Shibahara A, Matsuo Y, Tanaka T, Kouno I. 2010. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. J Nat Prod 73: 33-39. https://doi.org/10.1021/np900618v
  9. Bae JS, Kim TH. 2012. Enzymatic transformation of caffeic acid with enhanced cyclooxygenase-2 inhibitory activity. Bioorg Med Chem Lett 22: 793-796. https://doi.org/10.1016/j.bmcl.2011.12.072
  10. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
  11. Martinez-Esparza M, Jimenez-Cervantes C, Solano F, Lozano JA, Garcia-Borron JC. 1998. Mechanism of melanogenesis inhibition by tumor necrosis factor-$\alpha$ in B16/F10 mouse melanoma cells. Eur J Biochem 255: 139-146. https://doi.org/10.1046/j.1432-1327.1998.2550139.x
  12. Sies H. 2010. Polyphenols and health: update and perspectives. Arch Biochem Biophys 501: 2-5. https://doi.org/10.1016/j.abb.2010.04.006
  13. Yasuda T, Inaba A, Ohmori M, Endo T, Kubo S, Ohsawa K. 2000. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical. J Nat Prod 63: 1444-1446. https://doi.org/10.1021/np0000421
  14. Nonaka GI, Hashimoto F, Nishioka I. 1986. Tannins and related compounds. XXXVI. Isolation and structures of theaflagallins, new red pigments from black tea. Chem Pharm Bull 34: 61-65. https://doi.org/10.1248/cpb.34.61
  15. Park JG, Kramer BS, Steinberg SM, Carmichael J, Collins JM, Minna JD, Gazdar AF. 1987. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolim-based colorimetric assay. Cancer Res 47: 5875-5879.
  16. Kwak JH, Seo UK, Han YH. 2001. Inhibitory effect of mugwort extracts on tyrosinase activity. Korean J Biotechnol Bioeng 16: 220-223.
  17. Huang HC, Chou YC, Wu CY, Chang TM. 2013. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways. Biochem Biophys Res Commun 438: 375-381. https://doi.org/10.1016/j.bbrc.2013.07.079
  18. Busca R, Ballotti R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  19. Sassone-Corsi P. 1998. Coupling gene expression to cAMP signalling: role of CREB and CREM. Int J Biochem Cell Biol 30: 27-38. https://doi.org/10.1016/S1357-2725(97)00093-9
  20. Li Y, Shibahara A, Matsuo Y, Tanaka T, Kouno I. 2010. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. J Nat Prod 73: 33-39. https://doi.org/10.1021/np900618v
  21. Tanaka T, Miyata Y, Tamaya K, Kusano R, Matsuno R, Tamaru S, Tanaka K, Matsui T, Maeda M, Kouno I. 2009. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves. J Agric Food Chem 57: 5816-5822. https://doi.org/10.1021/jf900963p
  22. Miyata Y, Tamaru S, Tanaka T, Tamaya K, Matsui T, Nagata Y, Tanaka K. 2013. Theaflavins and theasinensin A derived from fermented tea have antiherperglycemic and hypotriacylglycerolemic effects in KK-A(y) mice and Sprague-Dawley rats. J Agric Food Chem 61: 9366-9372. https://doi.org/10.1021/jf400123y