DOI QR코드

DOI QR Code

Effects of Various Garlic (Allium sativum) Extracts on Cholesterol Synthesis in HepG2 Cells

다양한 마늘 추출물이 HepG2 세포에서 콜레스테롤 합성에 미치는 효과

  • Jung, Suhan (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sang Hoon (Department of Nutritional Science and Food Management, College of Health Science, Ewha Womans University) ;
  • Ko, Kwang Suk (Department of Nutritional Science and Food Management, College of Health Science, Ewha Womans University)
  • 정수한 (고려대학교 생명과학대학 생명공학과) ;
  • 이상훈 (이화여자대학교 건강과학대학 식품영양학과) ;
  • 고광석 (이화여자대학교 건강과학대학 식품영양학과)
  • Received : 2015.08.10
  • Accepted : 2015.08.29
  • Published : 2015.12.31

Abstract

This study was performed to investigate the effects of various garlic extracts on cholesterol synthesis in HepG2 cells. Raw garlic, grilled garlic, and freeze dried garlic were subjected to cold water extraction, and extracts were incubated at room temperature for 1 min or 60 min. The extracts were treated to HepG2 cells for 4 h, and cholesterol synthesis and mRNA expression level of HMG-CoA reductase were investigated. The alliin contents were reduced when garlic was incubated at room temperature for 60 min. Raw garlic extracts showed lower intracellular cholesterol contents compared to that of the control group. However, raw garlic extracts incubated for 60 min showed no differences compared to the control group. Freeze-dried garlic extract showed minimum intracellular triglyceride and cholesterol contents. Relative mRNA expression level of HMG-CoA reductase, a rate-limiting enzyme of cholesterol synthesis, decreased in the garlic extracts. Compared with 60 min, garlic extracts incubated for 1 min showed a reduced level of HMG-CoA reductase mRNA expression. The freeze-dried garlic extract reduced mRNA expression level of HMG-CoA reductase in a dose-dependent manner in cells treated with 5% of 0.2, 0.5, 0.8, 1.0, and 1.5 mg/mL in medium, and the effect was maxed out at dose of 5% garlic extract at 1.0 mg/mL in medium.

본 연구에서는 마늘의 다양한 조리법에 따른 냉수추출 마늘 추출물이 HepG2 세포 내 콜레스테롤 합성에 미치는 효과에 대하여 알아보고자 세포 내 중성지방 및 콜레스테롤 함량을 확인하고 real-time PCR을 이용하여 작용 기전을 알아보았다. 마늘을 $25^{\circ}C$에서 60분간 숙성하였을 경우 1분간 숙성하였을 때와 비교하여 추출물 내 alliin 함량이 감소하는 것을 확인할 수 있었다. 마늘 추출물을 HepG2 세포에 처리하였을 때 세포 내 중성지방 및 콜레스테롤의 함량이 감소하는 모습을 보여주었으며, 특히 동결건조 마늘 추출물이 그 효과가 가장 우수하였다. 콜레스테롤 합성의 제한효소인 HMGCoA reductase의 발현량 역시 마늘 추출물을 처리함에 따라 감소하는 모습을 보였으며, 동결건조 마늘 추출물을 처리하였을 때 가장 많이 감소하는 모습을 보였다. 다만 산성처리를 한 마늘의 추출물을 세포에 처리하였을 때에는 그 효과가 감소하는 것으로 나타났다. 동결건조 마늘 추출물의 농도 비례 효과를 살펴본 결과 동결건조 마늘 추출물의 경우 생마늘을 상온에 60분 숙성시킨 마늘 추출물과 구운마늘 추출물에 비하여 세포 내 중성지방과 콜레스테롤 합성 감소에 효과가 뛰어난 것으로 나타났으며, 이러한 결과는 HMGCoA reducatase mRNA의 상대적 발현 수준 차이 이상의 지질 감소 효과를 나타내는 것을 확인할 수 있었다. 따라서 동결건조 마늘의 경우 생마늘을 섭취하였을 때와 유사한 또는 더 우수한 효능을 보이면서도 오히려 보관성이 우수하고 생마늘 섭취 시 나타날 수 있는 과민 반응 및 알레르기 반응의 위험이 적기 때문에 다양하게 응용될 수 있는 가능성이 있을 것으로 사료되며, 이를 뒷받침할 방안들의 연구가 진행되어져야 할 것으로 판단된다.

Keywords

References

  1. Lee TB. 1979. Illustrated flora of Korea. Hangmunsa, Seoul, Korea. p 203.
  2. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. 2001. Intake of garlic and its bioactive components. J Nutr 131: 955S-962S. https://doi.org/10.1093/jn/131.3.955S
  3. Pedraza-Chaverri J, Medina-Campos ON, Granados-Silvestre MA, Maldonado PD, Olivares-Corichi IM, Hernandez-Pando R. 2000. Garlic ameliorates hyperlipidemia in chronic aminonucleoside nephrosis. Mol Cell Biochem 211: 69-77. https://doi.org/10.1023/A:1007106632313
  4. Rahman K, Lowe GM. 2006. Garlic and cardiovascular disease: a critical review. J Nutr 136: 736S-740S. https://doi.org/10.1093/jn/136.3.736S
  5. Heojun. 1991. Dongeuibogam. Namsandang, Seoul, Korea. p 1172.
  6. Lawson LD, Wood SG, Hughes BG. 1991. HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Planta Med 57: 263-270. https://doi.org/10.1055/s-2006-960087
  7. Jeang DY, Jeang SU. 2005. Garlic science. World Science, Seoul, Korea. p 93-103.
  8. Bordia A, Bansal HC, Arora SK, Singh SV. 1975. Effect of the essential oils of garlic and onion on alimentary hyperlipemia. Atherosclerosis 21: 15-19. https://doi.org/10.1016/0021-9150(75)90091-X
  9. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med 60: 417-420. https://doi.org/10.1055/s-2006-959522
  10. Lawson LD, Ransom DK, Hughes BG. 1992. Inhibition of whole blood platelet-aggregation by compounds in garlic clove extracts and commercial garlic products. Thromb Res 65: 141-156. https://doi.org/10.1016/0049-3848(92)90234-2
  11. Rees LP, Minney SF, Plummer NT, Slater JH, Skyrme DA. 1993. A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World J Microbiol Biotechnol 9: 303-307. https://doi.org/10.1007/BF00383068
  12. Ried K, Toben C, Fakler P. 2013. Effect of garlic on serum lipids: an updated meta-analysis. Nutr Rev 71: 282-299. https://doi.org/10.1111/nure.12012
  13. Bordia A, Verma SK, Vyas AK, Khabya BL, Rathore AS, Bhu N, Bedi HK. 1977. Effect of essential oil of onion and garlic on experimental atherosclerosis in rabbits. Atherosclerosis 26: 379-386. https://doi.org/10.1016/0021-9150(77)90092-2
  14. Byun BH, Kim SH, Jeong HG, Kim BY, Nm CH, Roh PU. 1995. Effect of garlic on enzyme activities of rats fed lard and alcohol. J Fd Hyg Safety 10: 163-168.
  15. Chen HC, Chang MD, Chang TJ. 1985. Antibacterial properties of some spice plants before and after heat treatment. Chin J Microbiol Immunol 18: 190-195.
  16. Bordia T, Mohammed N, Thomson M, Ali M. 1996. An evaluation of garlic and onion as antithrombotic agents. Prostaglandins Leukot Essent Fatty Acids 54: 183-186. https://doi.org/10.1016/S0952-3278(96)90014-9
  17. Amagase H, Milner JA. 1993. Impact of various sources of garlic and their constituents on 7,12-dimethylbenz[a]anthracene binding to mammary cell DNA. Carcinogenesis 14: 1627-1631. https://doi.org/10.1093/carcin/14.8.1627
  18. Amagase H, Schaffer EM, Milner JA. 1996. Dietary components modify the ability of garlic to suppress 7,12-dimethylbenz(a) anthracene-induced mammary DNA adducts. J Nutr 126: 817-824. https://doi.org/10.1093/jn/126.4.817
  19. Kim MR, Mo EK. 1995. Volatile sulfur compounds in pickled garlic. Korean J Soc Food Sci 11: 133-139.
  20. Koo BS, Ahn MS, Lee KY. 1994. Changes of volatile flavor components in garlic-seasoning oil. Korean J Food Sci Technol 26: 520-525.
  21. Chun HJ, Paik JE. 1997. Effect of heat treatment of garlic added diet on the blood of spontaneously hypertension rat. J Korean Soc Food Sci Nutr 26: 103-108.
  22. Park JH, Park YK, Park E. 2009. Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Foods Hum Nutr 64: 244-249. https://doi.org/10.1007/s11130-009-0132-1
  23. Lee SJ, Shin JH, Kang MJ, Seo JK, Sung NJ. 2009. Antioxidant activity of garlic with different processing on soybean oil. J Fd Hyg Safety 24: 204-210.
  24. Kim MR, Mo EK, Lee KJ. 1993. Inhibition of lipoxygenase activity by the extract of various processed garlic. Korean J Soc Food Sci 9: 215-221.
  25. Kim YD, Kim KM, Hur CK, Kim ES, Cho IK, Kim KJ. 2004. Antimicrobial activity of garlic extracts according to different cooking methods. Korean J Food Preserv 11: 400-404.
  26. Bae HJ, Chun HJ. 2002. Changes in volatile sulfur compounds of garlic under various cooking conditions. Korean J Soc Food Cookery Sci 18: 365-371.
  27. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509.
  28. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  29. Gebhardt R. 1993. Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids 28: 613-619. https://doi.org/10.1007/BF02536055
  30. Jung EB, Choi JH, Yu HJ, Kim KH, Lee SK, Hwang YI, Lee SH. 2013. Organosulfur compounds in fermented garlic extracts and the effects on alcohol induced cytotoxicity in CYP2E1-transfected HepG2 cells. J Korean Soc Food Sci Nutr 42: 342-347. https://doi.org/10.3746/jkfn.2013.42.3.342
  31. Gebhardt R, Beck H, Wagner KG. 1994. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells. Biochim Biophys Acta 1213: 57-62. https://doi.org/10.1016/0005-2760(94)90222-4
  32. Qureshi AA, Abuirmeileh N, Din ZZ, Elson CE, Burger WC. 1983. Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids 18: 343-348. https://doi.org/10.1007/BF02537229
  33. Lawson LD, Wang ZJ, Hughes BG. 1991. Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med 57: 363-370. https://doi.org/10.1055/s-2006-960119
  34. Zlatkis A, Zak B. 1969. Study of a new cholesterol reagent. Anal Biochem 29: 143-148. https://doi.org/10.1016/0003-2697(69)90017-7
  35. Biggs HG, Erikson JM, Moorehead WR. 1975. A manual colorimetric assay of triglyceride in serum. Clin Chem 21: 437-441.
  36. Joo EJ. 1978. A study on the changes of components in some organs and growth rate of albino rats by feeding of experimental diet supplemented with garlic. MS Thesis. Sookmyung Women's University, Seoul, Korea. p 13-16.
  37. Ahmed RS, Sharma SB. 1997. Biochemical studies on combined effects of garlic (Allium sativum Linn) and ginger (Zingiber officinale Rosc) in albino rats. Indian J Exp Biol 35: 841-843.
  38. Kim RJ, Lee SJ, Kim MJ, Hwang CR, Kang JR, Jung WJ, Sung NJ. 2010. Effects of fresh, red and black garlic powder on lipid metabolism of obese rats induced by high fat diet. J Agric Life Sci 44: 159-170.
  39. Mills S, Bone K. 2005. The essential guide to herbal safety. Elsevier Health Sciences, St. Louis, MO, USA. p 412-414.