DOI QR코드

DOI QR Code

분진-미스트 시스템을 이용한 실시간 수용성 유기탄소 분석

Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System

  • Cho, In-Hwan (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Da-Jeong (Department of Environmental Engineering, Mokpo National University) ;
  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University)
  • 투고 : 2015.11.27
  • 심사 : 2015.12.09
  • 발행 : 2015.12.31

초록

Real-time and quantitative measurement of the chemical composition in ambient aerosols represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, time resolved application by Aerosol-into-Mist System (AIMS) following by total organic carbon analyzer (TOC) has been developed. The unique aspect of the combination of these two techniques is to provide quantifiable water soluble organic carbon (WSOC) information of particle-phase organic compounds on timescales of minutes. We also demonstrated that the application of the AIMS method is not limited to water-soluble organic carbon but inorganic ion compounds. By correlating the volume concentrations by optical particle sizer (OPS), water soluble organic carbon can be highly related to the secondary organic products. AIMS-TOC method can be potentially applied to probe the formation and evolution mechanism of a variety of SOA behaviors in ambient air.

키워드

참고문헌

  1. Bae, M., J. Schauer, J. DeMinter, J. Turner, D. Smith, and R. Cary (2004) Validation of a Semi-Continuous Instrument for Elemental Carbon and Organic Carbon Using a Thermal-Optical Method, Atmos. Environ., 38, 2885-2893. https://doi.org/10.1016/j.atmosenv.2004.02.027
  2. Bae, M.S., J. Schwab, Q. Zhang, O. Hogrefe, K. Demerjian, S. Weimer, K. Rhoads, D. Orsini, P. Venkatachari, and P. Hopke (2007) Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry, J. Geophys. Res., 112, D22305. https://doi.org/10.1029/2007JD008614
  3. Chan, M., J. Surratt, A. Chan, K. Schilling, J. Offenberg, M. Lewandowski, E. Edney, T. Kleindienst, M. Jaoui, E. Edgerton, R. Tanner, S. Shaw, M. Zheng, E. Knipping, and J. Seinfeld (2011) Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene, Atmos. Chem. Phys., 11, 1735-1751. https://doi.org/10.5194/acp-11-1735-2011
  4. Cheng, Y., K.B. He, F.K. Duan, M. Zheng, Y.L. Ma, and J.H. Tan (2009) Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC, Atmos. Chem. Phys., 9, 7243-7256. https://doi.org/10.5194/acp-9-7243-2009
  5. Clark, C., S. Nakao, A. Asa-Awuku, K. Sato, and D. Cocker (2013) Real-time study of particle-phase products from alpha-pinene ozonolysis and isoprene photooxidation using particle into liquid sampling directly coupled to a time-of-flight mass spectrometer (PILSToF), Aerosol Sci. Tech., 47, 1374-1382. https://doi.org/10.1080/02786826.2013.844333
  6. Draxler, R.R. and G.D. Rolph (2015) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, College Park, MD.
  7. Dye, C. and K. Yttri (2005) Determination of monosaccharide anhydrides in atmospheric aerosols by use of high-performance liquid chromatography combined with high-resolution mass spectrometry, Anal. Chem., 77(6), 1853-1858. https://doi.org/10.1021/ac049461j
  8. Fahnestock, K., L. Yee, C. Loza, M. Coggon, R. Schwantes, X. Zhang, N. Dalleska, and J. Seinfeld (2014) Secondary organic aerosol composition from C12 alkanes, J. Phys. Chem. A., 119 (19), 4281-4297.
  9. Gelencser, A., A. Hoffer, Z. Krivacsy, G. Kiss, A. Molnar, and E. Meszaros (2002) On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res. Atmos., 107(D12).
  10. Isaacman, G., K. Wilson, A. Chan, D. Worton, J. Kimmel, T. Nah, T. Hohaus, M. Gonin, J. Kroll, D. Worsnop, and A. Goldstein (2012) Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatographyvacuum ultraviolet-mass spectrometry, Anal. Chem., 84(5), 2335-2342. https://doi.org/10.1021/ac2030464
  11. Jimenez, J., J. Jayne, O. Shi, C. Kolb, D. Worsnop, I. Yourshaw, J. Seinfeld, R. Flagan, X. Zhang, K. Smith, J. Morris, and P. Davidovits (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer, J. Geophys. Res. Atmos., 108(D7).
  12. Lavrich, R. and M. Hays (2007) Validation studies of thermal extraction-GC/MS applied to source emissions aerosols. 1. Semivolatile analyte-nonvolatile matrix interactions, Anal. Chem., 79(10), 3635-3645. https://doi.org/10.1021/ac0623282
  13. Lin, Y., Z. Zhang, K. Docherty, H. Zhang, S. Budisulistiorini, C. Rubitschun, S. Shaw, E. Knipping, E. Edgerton, T. Kleindienst, A. Gold, and J. Surratt (2012) Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds, Environ. Sci. Technol., 46(1), 250-258. https://doi.org/10.1021/es202554c
  14. Park, D.J., I.H. Cho, and M.S. Bae (2015) Determination of Amino Acids on Wintertime $PM_{2.5}$ using HPLC-FLD, J. Korean Soc. Atmos. Environ., 31(5), 482-492. (in Korean with English Abstract). https://doi.org/10.5572/KOSAE.2015.31.5.482
  15. Park, D.J., J.Y. Ahn, H.J. Shin, and M.S. Bae (2014) Characteristics of $PM_{2.5}$ Carbonaceous Aerosol using PILS-TOC and GC/MS-TD in Seoul, J. Korean Soc. Atmos. Environ., 30(5), 461-476. (in Korean with English Abstract) https://doi.org/10.5572/KOSAE.2014.30.5.461
  16. Parshintsev, J., M. Kivilompolo, J. Ruiz-Jimenez, K. Hartonen, M. Kulmala, and M. Riekkola (2010) Particle-into-Liquid Sampler on-line coupled with solidphase extraction-liquid chromatography-mass spectrometry for the determination of organic acids in atmospheric aerosols, J. Chromatogr. A., 1217(33), 5427-5433. https://doi.org/10.1016/j.chroma.2010.06.026
  17. Simpson, C., M. Paulsen, R. Dills, L. Liu, and D. Kalman (2005) Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustion, Environ. Sci. Technol., 39(2), 631-637. https://doi.org/10.1021/es0486871
  18. Sullivan, A., R. Peltier, C. Brock, J. de Gouw, J. Holloway, C. Warneke, A. Wollny, and R. Weber (2006) Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: method development and an investigation into water-soluble organic carbon sources, J. Geophys. Res. Atmos., 111(D23).
  19. Surratt, J., A. Chan, N. Eddingsaas, M. Chan, C. Loza, A. Kwan, S. Hersey, R. Flagan, P. Wennberg, and J. Seinfeld (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene, P. Natl. Acad. Sci. USA., 107(15), 6640-6645. https://doi.org/10.1073/pnas.0911114107
  20. Weber, R., D. Orsini, Y. Daun, Y.N. Lee, P. Klotz, and F. Brechtel (2001) A particle-intoliquid collector for rapid measurement of aerosol bulk chemical composition, Aerosol. Sci. Tech., 35(3), 718-727. https://doi.org/10.1080/02786820152546761
  21. Zahardis, J., B. LaFranchi, and G. Petrucci (2006) The heterogeneous reaction of particle-phase methyl esters and ozone elucidated by photoelectron resonance capture ionization: direct products of ozonolysis and secondary reactions leading to the formation of ketones, Int. J. Mass Spectrom., 253, 38-47. https://doi.org/10.1016/j.ijms.2006.02.010

피인용 문헌

  1. -Part II vol.32, pp.2, 2016, https://doi.org/10.5572/KOSAE.2016.32.2.158
  2. Comparison of Real Time Water Soluble Organic Carbon Measurements by Two PILS-TOC Analyzers vol.32, pp.6, 2016, https://doi.org/10.5572/KOSAE.2016.32.6.633