DOI QR코드

DOI QR Code

(AlP)1/(CrP)1 초격자계에서 (001) 표면의 자성과 반쪽금속성에 대한 제일원리 연구

First-principles Study on the Half-metallicity and Magnetism of the (001) Surfaces of (AlP)1/(CrP)1 Superlattice

  • 투고 : 2015.11.09
  • 심사 : 2015.12.07
  • 발행 : 2015.12.31

초록

덩치상태에서 반쪽금속성을 나타내는 $(AlP)_1/(CrP)_1$ 초격자계에서 (001) 표면의 자성과 반쪽금속성에 대해 FLAPW (Full-potential Liniarized Augmented Plane Wave) 방법을 이용하여 연구하였다. (001) 표면이 나타나는 Al(S)-, Cr(S)-, P(S)Al(S-1)- 및 P(S)Cr(S-1)-term 계 등 모두 네 가지 표면계를 고려하였다. 계산결과 Cr(S)-term 계만 정수배의 보어마그네톤의 자기모멘트를 가져 표면에서 반쪽금속성이 유지됨을 알았다. 이 계에서 표면 Cr 원자의 자기모멘트는 띠좁힘과 스핀분리의 증가 등의 표면효과로 인해 덩치상태에 비해 증가한 $3.02{\mu}_B$였다. P(S)Al(S-1)-term 계에서 표면 P(S)층의 상태밀도는 $p_z$ 상태의 국소화로 인해 매우 예리한 표면상태의 봉우리를 보여 주었으며, P(S)Cr(S-1)-term의 경우 P(S)층과 Cr(S-1)층 사이에 큰 혼합이 존재하였고, 그 결과 P(S)층의 자기모멘트는 $-0.33{\mu}_B$이었다.

The half-metallicity and magnetism of the (001) surfaces of $(AlP)_1/(CrP)_1$ superlattice were investigated by means of FLAPW (Full-potential Liniarized Augmented Plane Wave) method. We considered four types of (001) surface termination, i.e., Al(S)-, Cr(S)-, P(S)Al(S-1)- and P(S)Cr(S-1)-term systems. We found that only Cr(S)-term system maintains the half-metallicity at the surface as only this system has the calculated magnetic moment of integer number of bohr magnetons. The magnetic moment of Cr(S) atom in the system was $3.02{\mu}_B$ which was increased from the bulk value by the effects of band narrowing and increased spin-splitting at the surface. The electronic density of states of the P(S) atom in the P(S)Al(S-1)-term showed very sharp surface states due to the broken $p_z$ bonds at the surface. We found there is still a strong p-d hybridization between the P(S) and Cr(S-1) layers in the P(S)Cr(S-1)-term which causes a considerable increase of magnetic moment of P(S) atom.

키워드

참고문헌

  1. R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  2. I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429
  3. S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997). https://doi.org/10.1103/PhysRevB.55.10253
  4. Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002). https://doi.org/10.1103/PhysRevB.65.064417
  5. H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000). https://doi.org/10.1143/JJAP.39.L1118
  6. W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003). https://doi.org/10.1103/PhysRevLett.91.037204
  7. I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003). https://doi.org/10.1103/PhysRevB.67.104417
  8. K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).
  9. O. Volnianska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006). https://doi.org/10.1016/j.jallcom.2006.01.092
  10. M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404
  11. G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).
  12. O. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007). https://doi.org/10.1103/PhysRevB.75.224418
  13. E. Yan, Physica B 407, 879 (2012). https://doi.org/10.1016/j.physb.2011.12.106
  14. X.-S. Song, S. Dong, and H. Zhao, Compu. Mater. Sci. 84, 306 (2014). https://doi.org/10.1016/j.commatsci.2013.12.031
  15. M. Merabet, D. Rached, S. Benalia, A. H. Reshek, N. Bettahar, H. Righi, H. Baltache, F. Soyalp, and M. Labair, Superlattices and Microstructures 65, 195 (2014). https://doi.org/10.1016/j.spmi.2013.10.037
  16. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019
  21. G. Rhaman, S. Cho, and S. C. Hong, J. Magn. Magn. Mater. 310, 2192 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1133