DOI QR코드

DOI QR Code

First-principles Study on the Half-metallicity and Magnetism of the (001) Surfaces of (AlP)1/(CrP)1 Superlattice

(AlP)1/(CrP)1 초격자계에서 (001) 표면의 자성과 반쪽금속성에 대한 제일원리 연구

  • Received : 2015.11.09
  • Accepted : 2015.12.07
  • Published : 2015.12.31

Abstract

The half-metallicity and magnetism of the (001) surfaces of $(AlP)_1/(CrP)_1$ superlattice were investigated by means of FLAPW (Full-potential Liniarized Augmented Plane Wave) method. We considered four types of (001) surface termination, i.e., Al(S)-, Cr(S)-, P(S)Al(S-1)- and P(S)Cr(S-1)-term systems. We found that only Cr(S)-term system maintains the half-metallicity at the surface as only this system has the calculated magnetic moment of integer number of bohr magnetons. The magnetic moment of Cr(S) atom in the system was $3.02{\mu}_B$ which was increased from the bulk value by the effects of band narrowing and increased spin-splitting at the surface. The electronic density of states of the P(S) atom in the P(S)Al(S-1)-term showed very sharp surface states due to the broken $p_z$ bonds at the surface. We found there is still a strong p-d hybridization between the P(S) and Cr(S-1) layers in the P(S)Cr(S-1)-term which causes a considerable increase of magnetic moment of P(S) atom.

덩치상태에서 반쪽금속성을 나타내는 $(AlP)_1/(CrP)_1$ 초격자계에서 (001) 표면의 자성과 반쪽금속성에 대해 FLAPW (Full-potential Liniarized Augmented Plane Wave) 방법을 이용하여 연구하였다. (001) 표면이 나타나는 Al(S)-, Cr(S)-, P(S)Al(S-1)- 및 P(S)Cr(S-1)-term 계 등 모두 네 가지 표면계를 고려하였다. 계산결과 Cr(S)-term 계만 정수배의 보어마그네톤의 자기모멘트를 가져 표면에서 반쪽금속성이 유지됨을 알았다. 이 계에서 표면 Cr 원자의 자기모멘트는 띠좁힘과 스핀분리의 증가 등의 표면효과로 인해 덩치상태에 비해 증가한 $3.02{\mu}_B$였다. P(S)Al(S-1)-term 계에서 표면 P(S)층의 상태밀도는 $p_z$ 상태의 국소화로 인해 매우 예리한 표면상태의 봉우리를 보여 주었으며, P(S)Cr(S-1)-term의 경우 P(S)층과 Cr(S-1)층 사이에 큰 혼합이 존재하였고, 그 결과 P(S)층의 자기모멘트는 $-0.33{\mu}_B$이었다.

Keywords

References

  1. R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024
  2. I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002). https://doi.org/10.1103/PhysRevB.66.174429
  3. S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997). https://doi.org/10.1103/PhysRevB.55.10253
  4. Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002). https://doi.org/10.1103/PhysRevB.65.064417
  5. H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000). https://doi.org/10.1143/JJAP.39.L1118
  6. W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003). https://doi.org/10.1103/PhysRevLett.91.037204
  7. I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003). https://doi.org/10.1103/PhysRevB.67.104417
  8. K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).
  9. O. Volnianska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006). https://doi.org/10.1016/j.jallcom.2006.01.092
  10. M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006). https://doi.org/10.1103/PhysRevB.73.024404
  11. G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).
  12. O. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007). https://doi.org/10.1103/PhysRevB.75.224418
  13. E. Yan, Physica B 407, 879 (2012). https://doi.org/10.1016/j.physb.2011.12.106
  14. X.-S. Song, S. Dong, and H. Zhao, Compu. Mater. Sci. 84, 306 (2014). https://doi.org/10.1016/j.commatsci.2013.12.031
  15. M. Merabet, D. Rached, S. Benalia, A. H. Reshek, N. Bettahar, H. Righi, H. Baltache, F. Soyalp, and M. Labair, Superlattices and Microstructures 65, 195 (2014). https://doi.org/10.1016/j.spmi.2013.10.037
  16. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
  17. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  20. D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977). https://doi.org/10.1088/0022-3719/10/16/019
  21. G. Rhaman, S. Cho, and S. C. Hong, J. Magn. Magn. Mater. 310, 2192 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1133